Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922687

RESUMO

Kaposi's sarcoma-associated herpesvirus is the etiologic agent of Kaposi's sarcoma and two B-cell malignancies. Recent advancements in sequencing technologies have led to high resolution transcriptomes for several human herpesviruses that densely encode genes on both strands. However, for KSHV progress remained limited due to the overall low percentage of KSHV transcripts, even during lytic replication. To address this challenge, we have developed a target enrichment method to increase the KSHV-specific reads for both short- and long-read sequencing platforms. Furthermore, we combined this approach with the Transcriptome Resolution through Integration of Multi-platform Data (TRIMD) pipeline developed previously to annotate transcript structures. TRIMD first builds a scaffold based on long-read sequencing and validates each transcript feature with supporting evidence from Illumina RNA-Seq and deepCAGE sequencing data. Our stringent innovative approach identified 994 unique KSHV transcripts, thus providing the first high-density KSHV lytic transcriptome. We describe a plethora of novel coding and non-coding KSHV transcript isoforms with alternative untranslated regions, splice junctions and open-reading frames, thus providing deeper insights on gene expression regulation of KSHV. Interestingly, as described for Epstein-Barr virus, we identified transcription start sites that augment long-range transcription and may increase the number of latency-associated genes potentially expressed in KS tumors.

2.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37116218

RESUMO

In Drosophila melanogaster and D. simulans head tissue, 60% of orthologous genes show evidence of sex-biased expression in at least one species. Of these, ∼39% (2,192) are conserved in direction. We hypothesize enrichment of open chromatin in the sex where we see expression bias and closed chromatin in the opposite sex. Male-biased orthologs are significantly enriched for H3K4me3 marks in males of both species (∼89% of male-biased orthologs vs. ∼76% of unbiased orthologs). Similarly, female-biased orthologs are significantly enriched for H3K4me3 marks in females of both species (∼90% of female-biased orthologs vs. ∼73% of unbiased orthologs). The sex-bias ratio in female-biased orthologs was similar in magnitude between the two species, regardless of the closed chromatin (H3K27me2me3) marks in males. However, in male-biased orthologs, the presence of H3K27me2me3 in both species significantly reduced the correlation between D. melanogaster sex-bias ratio and the D. simulans sex-bias ratio. Male-biased orthologs are enriched for evidence of positive selection in the D. melanogaster group. There are more male-biased genes than female-biased genes in both species. For orthologs with gains/losses of sex-bias between the two species, there is an excess of male-bias compared to female-bias, but there is no consistent pattern in the relationship between H3K4me3 or H3K27me2me3 chromatin marks and expression. These data suggest chromatin state is a component of the maintenance of sex-biased expression and divergence of sex-bias between species is reflected in the complexity of the chromatin status.


Assuntos
Cromatina , Drosophila melanogaster , Animais , Feminino , Masculino , Drosophila melanogaster/genética , Cromatina/genética , Drosophila simulans/genética , Evolução Molecular , Drosophila/genética
3.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38006335

RESUMO

SUMMARY: Experimental methods using microRNA/target ligation have recently provided significant insights into microRNA functioning through generation of chimeric (hybrid) RNA sequences. Here, we introduce Hybkit, a Python3 API, and command-line toolkit for analysis of hybrid sequence data in the "hyb" file format to enable customizable evaluation and annotation of hybrid characteristics. The Hybkit API includes a suite of python objects for developing custom analyses of hybrid data as well as miRNA-specific analysis methods, built-in plotting of analysis results, and incorporation of predicted miRNA/target interactions in Vienna format. AVAILABILITY AND IMPLEMENTATION: Hybkit is provided free and open source under the GNU GPL license at github.com/RenneLab/hybkit and archived on Zenodo (doi.org/10.5281/zenodo.7834299). Hybkit distributions are also provided via PyPI (pypi.org/project/hybkit), Conda (bioconda.github.io/recipes/hybkit/README.html), and Docker (quay.io/repository/biocontainers/hybkit).


Assuntos
MicroRNAs , Software , MicroRNAs/genética , Projetos de Pesquisa
4.
PLoS Genet ; 17(12): e1009934, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34914716

RESUMO

MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched for the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed gene products are associated with eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone calnexin as a direct miR-320a down-regulated target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. In summary, our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.


Assuntos
Fator 4 Ativador da Transcrição/genética , Neoplasias Colorretais/genética , MicroRNAs/genética , Ribonuclease III/genética , Antagomirs/genética , Proteínas Argonautas/genética , Calnexina/genética , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/genética , Retículo Endoplasmático/genética , Estresse do Retículo Endoplasmático/genética , Fator de Iniciação 2 em Eucariotos/genética , Técnicas de Inativação de Genes , Células HCT116 , Humanos , Transdução de Sinais/genética , Sítio de Iniciação de Transcrição
5.
RNA ; 27(6): 694-709, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33795480

RESUMO

MicroRNAs (miRNAs) are small noncoding RNAs that function as critical posttranscriptional regulators in various biological processes. While most miRNAs are generated from processing of long primary transcripts via sequential Drosha and Dicer cleavage, some miRNAs that bypass Drosha cleavage can be transcribed as part of another small noncoding RNA. Here, we develop the target-oriented miRNA discovery (TOMiD) bioinformatic analysis method to identify Drosha-independent miRNAs from Argonaute crosslinking and sequencing of hybrids (Ago-CLASH) data sets. Using this technique, we discovered a novel miRNA derived from a primate specific noncoding RNA, the small NF90 associated RNA A (snaR-A). The miRNA derived from snaR-A (miR-snaR) arises independently of Drosha processing but requires Exportin-5 and Dicer for biogenesis. We identify that miR-snaR is concurrently up-regulated with the full snaR-A transcript in cancer cells. Functionally, miR-snaR associates with Ago proteins and targets NME1, a key metastasis inhibitor, contributing to snaR-A's role in promoting cancer cell migration. Our findings suggest a functional link between a novel miRNA and its precursor noncoding RNA.


Assuntos
Biologia Computacional/métodos , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Movimento Celular , RNA Helicases DEAD-box/metabolismo , Células HCT116 , Células HEK293 , Humanos , Carioferinas/metabolismo , Células MCF-7 , Nucleosídeo NM23 Difosfato Quinases/antagonistas & inibidores , Nucleosídeo NM23 Difosfato Quinases/genética , Neoplasias/patologia , RNA Longo não Codificante/metabolismo , Ribonuclease III/metabolismo
6.
PLoS Pathog ; 17(5): e1009217, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956915

RESUMO

The Epstein Barr virus (EBV) contributes to the tumor phenotype through a limited set of primarily non-coding viral RNAs, including 31 mature miRNAs. Here we investigated the impact of EBV miRNAs on remodeling the tumor cell transcriptome. Strikingly, EBV miRNAs displayed exceptionally abundant expression in primary EBV-associated Burkitt's Lymphomas (BLs) and Gastric Carcinomas (GCs). To investigate viral miRNA targeting, we used the high-resolution approach, CLASH in GC and BL cell models. Affinity constant calculations of targeting efficacies for CLASH hits showed that viral miRNAs bind their targets more effectively than their host counterparts, as did Kaposi's sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) miRNAs. Using public BL and GC RNA-seq datasets, we found that high EBV miRNA targeting efficacies translates to enhanced reduction of target expression. Pathway analysis of high efficacy EBV miRNA targets showed enrichment for innate and adaptive immune responses. Inhibition of the immune response by EBV miRNAs was functionally validated in vivo through the finding of inverse correlations between EBV miRNAs and immune cell infiltration and T-cell diversity in BL and GC datasets. Together, this study demonstrates that EBV miRNAs are potent effectors of the tumor transcriptome that play a role in suppressing host immune response.


Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Regulação Viral da Expressão Gênica , Herpesvirus Humano 4/imunologia , MicroRNAs/genética , RNA Viral/genética , Complexo de Inativação Induzido por RNA/metabolismo , Transcriptoma , Infecções por Vírus Epstein-Barr/metabolismo , Infecções por Vírus Epstein-Barr/patologia , Infecções por Vírus Epstein-Barr/virologia , Herpesvirus Humano 4/genética , Humanos , Complexo de Inativação Induzido por RNA/genética
7.
Health Expect ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041447

RESUMO

BACKGROUND: Recruitment of cancer clinical trial (CCT) participants, especially participants representing the diversity of the US population, is necessary to create successful medications and a continual challenge. These challenges are amplified in Phase I cancer trials that focus on evaluating the safety of new treatments and are the gateway to treatment development. In preparation for recruitment to a Phase I recurrent head and neck cancer (HNC) trial, we assessed perceived barriers to participation or referral and suggestions for recruitment among people with HNC and community physicians (oncologist, otolaryngologist or surgeon). METHODS: Between December 2020 and February 2022, we conducted a qualitative needs assessment via semistructured interviews with a race and ethnicity-stratified sample of people with HNC (n = 30: 12 non-Hispanic White, 9 non-Hispanic African American, 8 Hispanic and 1 non-Hispanic Pacific Islander) and community physicians (n = 16) within the University of Florida Health Cancer Center catchment area. Interviews were analyzed using a qualitative content analysis approach to describe perspectives and identify relevant themes. RESULTS: People with HNC reported thematic barriers included: concerns about side effects, safety and efficacy; lack of knowledge and systemic and environmental obstacles. Physicians identified thematic barriers of limited physician knowledge; clinic and physician barriers and structural barriers. People with HNC and physicians recommended themes included: improved patient education, dissemination of trial information and interpersonal communication between community physicians and CCT staff. CONCLUSIONS: The themes identified by people with HNC and community physicians are consistent with research efforts and recommendations on how to increase the participation of people from minoritized populations in CCTs. This community needs assessment provides direction on the selection of strategies to increase CCT participation and referral. PATIENT OR PUBLIC CONTRIBUTION: This study focused on people with HNC and community physicians' lived experience and their interpretations of how they would consider a future Phase I clinical trial. In addition to our qualitative data reflecting community voices, a community member reviewed the draft interview guide before data collection and both people with HNC and physicians aided interpretation of the findings.

8.
J Virol ; 95(10)2021 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-33568509

RESUMO

Kaposi's sarcoma (KS) results from the transformation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected endothelial cells. The contribution of the KSHV microRNAs (miRNAs) to the process of oncogenesis in endothelial cells has not been fully elucidated. To better understand the contributions of individual miRNAs to oncogenesis-related cellular phenotypes, we used KSHV miRNA knockout mutants, each one lacking one of the twelve miRNA genes. An additional mutant lacked all miRNAs. Since KSHV infection causes a variety of phenotypic changes in endothelial cells, we tested the mutants for their ability to effect such changes in Telomerase-Immortalized Vein Endothelial (TIVE) cells infected with each of the mutant viruses. Wild type- and mutant-infected as well as uninfected cells were evaluated for perturbations to proliferation, migration, tubule formation, and glycolysis. We found broad variation between the different viruses in these aspects. With respect to proliferation rate, ΔmiR-K12-3, ΔmiR-K12-8, and ΔmiR-K12-11 showed significant impairment. Cells infected with ΔmiR-K12-11 had reduced migration. In tubule formation, the ΔmiR-K12-5, -6, and -7 viruses were deficient. At the same time, cells infected with the ΔmiR-K12-10 virus showed dysregulated glycolysis. By combining these observations with previously published KSHV miRNA targetome lists from ribonomics data, we were able to functionally validate a number of new miRNA targets in specific pathways. As proof of concept, miR-K12-3 was shown to target Cathepsin D, a strong promoter of apoptosis. Taken together, the results demonstrate that KSHV miRNAs play different roles in inducing the phenotypic changes which are characteristic of transformed cells.Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma (KS). The contribution of KSHV microRNAs (miRNAs) to oncogenesis is not fully understood. This is particularly true for human endothelial cells, the cell type from which KS tumors are derived. Here we used a panel of KSHV miRNA knockout viruses in order to shed light on the roles of individual miRNAs in the process of transformation. Latently infected endothelial cells were studied for phenotypic changes related to cancer, including proliferation, migration, angiogenesis, glycolysis, and apoptosis. The mutant-infected cell lines displayed a wide range of phenotypes in these selected measures of oncogenesis which differed from wild type-infected cells and from each other. These results indicate that KSHV miRNAs contribute to different aspects of oncogenesis, and that each one has a unique role to play.

9.
PLoS Pathog ; 15(8): e1007843, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31393953

RESUMO

Gammaherpesviruses, including the human pathogens Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), establish lifelong latent infection in B cells and are associated with a variety of tumors. In addition to protein coding genes, these viruses encode numerous microRNAs (miRNAs) within their genomes. While putative host targets of EBV and KSHV miRNAs have been previously identified, the specific functions of these miRNAs during in vivo infection are largely unknown. Murine gammaherpesvirus 68 (MHV68) is a natural pathogen of rodents that is genetically related to both EBV and KSHV, and thus serves as an excellent model for the study of EBV and KSHV genetic elements such as miRNAs in the context of infection and disease. However, the specific targets of MHV68 miRNAs remain completely unknown. Using a technique known as qCLASH (quick crosslinking, ligation, and sequencing of hybrids), we have now identified thousands of Ago-associated, direct miRNA-mRNA interactions during lytic infection, latent infection and reactivation from latency. Validating this approach, detailed molecular analyses of specific interactions demonstrated repression of numerous host mRNA targets of MHV68 miRNAs, including Arid1a, Ctsl, Ifitm3 and Phc3. Notably, of the 1,505 MHV68 miRNA-host mRNA targets identified in B cells, 86% were shared with either EBV or KSHV, and 64% were shared among all three viruses, demonstrating significant conservation of gammaherpesvirus miRNA targeting. Pathway analysis of MHV68 miRNA targets further revealed enrichment of cellular pathways involved in protein synthesis and protein modification, including eIF2 Signaling, mTOR signaling and protein ubiquitination, pathways also enriched for targets of EBV and KSHV miRNAs. These findings provide substantial new information about specific targets of MHV68 miRNAs and shed important light on likely conserved functions of gammaherpesvirus miRNAs.


Assuntos
Gammaherpesvirinae/fisiologia , Infecções por Herpesviridae/metabolismo , MicroRNAs/genética , Processamento de Proteína Pós-Traducional , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Animais , Regulação da Expressão Gênica , Infecções por Herpesviridae/genética , Infecções por Herpesviridae/virologia , Camundongos , RNA Mensageiro/genética , RNA Viral/genética , RNA Viral/metabolismo , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Replicação Viral
10.
PLoS Pathog ; 15(12): e1008221, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31881074

RESUMO

Kaposi's sarcoma (KS) is an AIDS-defining cancer caused by the KS-associated herpesvirus (KSHV). Unanswered questions regarding KS are its cellular ontology and the conditions conducive to viral oncogenesis. We identify PDGFRA(+)/SCA-1(+) bone marrow-derived mesenchymal stem cells (Pα(+)S MSCs) as KS spindle-cell progenitors and found that pro-angiogenic environmental conditions typical of KS are critical for KSHV sarcomagenesis. This is because growth in KS-like conditions generates a de-repressed KSHV epigenome allowing oncogenic KSHV gene expression in infected Pα(+)S MSCs. Furthermore, these growth conditions allow KSHV-infected Pα(+)S MSCs to overcome KSHV-driven oncogene-induced senescence and cell cycle arrest via a PDGFRA-signaling mechanism; thus identifying PDGFRA not only as a phenotypic determinant for KS-progenitors but also as a critical enabler for viral oncogenesis.


Assuntos
Células-Tronco Mesenquimais/virologia , Neovascularização Patológica/virologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Sarcoma de Kaposi/virologia , Animais , Carcinogênese/metabolismo , Expressão Gênica/fisiologia , Herpesvirus Humano 8/genética , Células-Tronco Mesenquimais/citologia , Camundongos , Transdução de Sinais/fisiologia
11.
J Virol ; 93(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30567979

RESUMO

Recent studies have identified circular RNAs (circRNAs) expressed from the Epstein-Barr virus (EBV) and Kaposi's sarcoma herpesvirus (KSHV) human DNA tumor viruses. To gain initial insights into the potential relevance of EBV circRNAs in virus biology and disease, we assessed the circRNAome of the interspecies homologue rhesus macaque lymphocryptovirus (rLCV) in a naturally occurring lymphoma from a simian immunodeficiency virus (SIV)-infected rhesus macaque. This analysis revealed rLCV orthologues of the latency-associated EBV circular RNAs circRPMS1_E4_E3a and circEBNA_U. Also identified in two samples displaying unusually high lytic gene expression was a novel rLCV circRNA that contains both conserved and rLCV-specific RPMS1 exons and whose backsplice junctions flank an rLCV lytic origin of replication (OriLyt). Analysis of a lytic infection model for the murid herpesvirus 68 (MHV68) rhadinovirus identified a cluster of circRNAs near an MHV68 lytic origin of replication, with the most abundant of these, circM11_ORF69, spanning the OriLyt. Lastly, analysis of KSHV latency and reactivation models revealed the latency associated circRNA originating from the vIRF4 gene as the predominant viral circRNA. Together, the results of this study broaden our appreciation for circRNA repertoires in the Lymphocryptovirus and Rhadinovirus genera of gammaherpesviruses and provide evolutionary support for viral circRNA functions in latency and viral replication.IMPORTANCE Infection with oncogenic gammaherpesviruses leads to long-term viral persistence through a dynamic interplay between the virus and the host immune system. Critical for remodeling of the host cell environment after the immune responses are viral noncoding RNAs that modulate host signaling pathways without attracting adaptive immune recognition. Despite the importance of noncoding RNAs in persistent infection, the circRNA class of noncoding RNAs has only recently been identified in gammaherpesviruses. Accordingly, their roles in virus infection and associated oncogenesis are unknown. Here we report evolutionary conservation of EBV-encoded circRNAs determined by assessing the circRNAome in rLCV-infected lymphomas from an SIV-infected rhesus macaque, and we report latent and lytic circRNAs from KSHV and MHV68. These experiments demonstrate utilization of the circular RNA class of RNAs across 4 members of the gammaherpesvirus subfamily, and they identify orthologues and potential homoplastic circRNAs, implying conserved circRNA functions in virus biology and associated malignancies.


Assuntos
Gammaherpesvirinae/genética , RNA/genética , Animais , Linhagem Celular , Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , Lymphocryptovirus/genética , Macaca mulatta , Masculino , RNA Circular , RNA Viral/genética , Rhadinovirus/genética , Vírus da Imunodeficiência Símia/genética , Latência Viral/genética , Replicação Viral/genética
12.
PLoS Pathog ; 14(8): e1007206, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080890

RESUMO

Our appreciation for the extent of Epstein Barr virus (EBV) transcriptome complexity continues to grow through findings of EBV encoded microRNAs, new long non-coding RNAs as well as the more recent discovery of over a hundred new polyadenylated lytic transcripts. Here we report an additional layer to the EBV transcriptome through the identification of a repertoire of latent and lytic viral circular RNAs. Utilizing RNase R-sequencing with cell models representing latency types I, II, and III, we identified EBV encoded circular RNAs expressed from the latency Cp promoter involving backsplicing from the W1 and W2 exons to the C1 exon, from the EBNA BamHI U fragment exon, and from the latency long non-coding RPMS1 locus. In addition, we identified circular RNAs expressed during reactivation including backsplicing from exon 8 to exon 2 of the LMP2 gene and a highly expressed circular RNA derived from intra-exonic backsplicing within the BHLF1 gene. While expression of most of these circular RNAs was found to depend on the EBV transcriptional program utilized and the transcription levels of the associated loci, expression of LMP2 exon 8 to exon 2 circular RNA was found to be cell model specific. Altogether we identified over 30 unique EBV circRNAs candidates and we validated and determined the structural features, expression profiles and nuclear/cytoplasmic distributions of several predominant and notable viral circRNAs. Further, we show that two of the EBV circular RNAs derived from the RPMS1 locus are detected in EBV positive clinical stomach cancer specimens. This study increases the known EBV latency and lytic transcriptome repertoires to include viral circular RNAs and it provides an essential foundation and resource for investigations into the functions and roles of this new class of EBV transcripts in EBV biology and diseases.


Assuntos
Regulação Viral da Expressão Gênica/genética , Herpesvirus Humano 4/genética , RNA Viral/genética , RNA/genética , Latência Viral/genética , Linhagem Celular , Infecções por Vírus Epstein-Barr/genética , Humanos , RNA Circular , RNA não Traduzido/genética
13.
Drug Metab Dispos ; 48(7): 563-569, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32357971

RESUMO

Previous work has shown that hepatic levels of human glutathione transferase zeta 1 (GSTZ1) protein, involved in tyrosine catabolism and responsible for metabolism of the investigational drug dichloroacetate, increase in cytosol after birth before reaching a plateau around age 7. However, the mechanism regulating this change of expression is still unknown, and previous studies showed that GSTZ1 mRNA levels did not correlate with GSTZ1 protein expression. In this study, we addressed the hypothesis that microRNAs (miRNAs) could regulate expression of GSTZ1. We obtained liver samples from donors aged less than 1 year or older than 13 years and isolated total RNA for use in a microarray to identify miRNAs that were downregulated in the livers of adults compared with children. From a total of 2578 human miRNAs tested, 63 miRNAs were more than 2-fold down-regulated in adults, of which miR-376c-3p was predicted to bind to the 3' untranslated region of GSTZ1 mRNA. There was an inverse correlation of miR-376c-3p and GSTZ1 protein expression in the liver samples. Using cell culture, we confirmed that miR-376c-3p could downregulate GSTZ1 protein expression. Our findings suggest that miR-376c-3p prevents production of GSTZ1 through inhibition of translation. These experiments further our understanding of GSTZ1 regulation. Furthermore, our array results provide a database resource for future studies on mechanisms regulating human hepatic developmental expression. SIGNIFICANCE STATEMENT: Hepatic glutathione transferase zeta 1 (GSTZ1) is responsible for metabolism of the tyrosine catabolite maleylacetoacetate as well as the investigational drug dichloroacetate. Through examination of microRNA (miRNA) expression in liver from infants and adults and studies in cells, we showed that expression of GSTZ1 is controlled by miRNA. This finding has application to the dosing regimen of the drug dichloroacetate. The miRNA expression profiles are provided and will prove useful for future studies of drug-metabolizing enzymes in infants and adults.


Assuntos
Envelhecimento/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Glutationa Transferase/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Feminino , Perfilação da Expressão Gênica , Glutationa Transferase/metabolismo , Células HEK293 , Células Hep G2 , Eliminação Hepatobiliar/genética , Humanos , Lactente , Recém-Nascido , Fígado/enzimologia , Fígado/crescimento & desenvolvimento , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Adulto Jovem
14.
Nucleic Acids Res ; 46(16): 8574-8589, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29846699

RESUMO

Ribonomics experiments involving crosslinking and immuno-precipitation (CLIP) of Ago proteins have expanded the understanding of the miRNA targetome of several organisms. These techniques, collectively referred to as CLIP-seq, have been applied to identifying the mRNA targets of miRNAs expressed by Kaposi's Sarcoma-associated herpes virus (KSHV) and Epstein-Barr virus (EBV). However, these studies focused on identifying only those RNA targets of KSHV and EBV miRNAs that are known to encode proteins. Recent studies have demonstrated that long non-coding RNAs (lncRNAs) are also targeted by miRNAs. In this study, we performed a systematic re-analysis of published datasets from KSHV- and EBV-driven cancers. We used CLIP-seq data from lymphoma cells or EBV-transformed B cells, and a crosslinking, ligation and sequencing of hybrids dataset from KSHV-infected endothelial cells, to identify novel lncRNA targets of viral miRNAs. Here, we catalog the lncRNA targetome of KSHV and EBV miRNAs, and provide a detailed in silico analysis of lncRNA-miRNA binding interactions. Viral miRNAs target several hundred lncRNAs, including a subset previously shown to be aberrantly expressed in human malignancies. In addition, we identified thousands of lncRNAs to be putative targets of human miRNAs, suggesting that miRNA-lncRNA interactions broadly contribute to the regulation of gene expression.


Assuntos
Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Viral/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linfócitos B/metabolismo , Linfócitos B/virologia , Linhagem Celular Tumoral , Células Cultivadas , Biologia Computacional/métodos , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Regulação da Expressão Gênica , Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Humanos , Imunoprecipitação , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , RNA Viral/metabolismo
15.
Gene Ther ; 26(12): 455-464, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31455873

RESUMO

The majority of hereditary neuropathies are caused by duplication of the peripheral myelin protein 22 (PMP22) gene. Therefore, mechanisms to suppress the expression of the PMP22 gene have high therapeutic significance. Here we asked whether the human PMP22 gene is a target for regulation by microRNA 29a (miR-29a). Using bioinformatics, we determined that the human PMP22 gene contains the conserved seed sequence of the miR-29a binding site and this regulatory motif is included in the duplicated region in neuropathic patients. Using luciferase reporter assays in HEK293 cells, we demonstrated that transient transfection of a miR-29a mimic is associated with reduction in PMP22 3'UTR reporter activity. Transfecting normal and humanized transgenic neuropathic mouse Schwann cells with a miR-29a expression plasmid effectively lowered both the endogenous mouse and the transgenic human PMP22 transcripts compared with control vector. In dermal fibroblasts derived from neuropathic patients, ectopic expression of miR-29a led to ~50% reduction in PMP22 mRNA, which corresponded to ~20% decrease in PMP22 protein levels. Significantly, miR-29a-mediated reduction in PMP22 mitigated the reduced mitotic capacity of the neuropathic cells. Together, these results support further testing of miR-29a and/or PMP22-targeting siRNAs as therapeutic agents for correcting the aberrant expression of PMP22 in neuropathic patients.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Regulação para Baixo , MicroRNAs/genética , Proteínas da Mielina/genética , Células de Schwann/citologia , Regiões 3' não Traduzidas , Animais , Células Cultivadas , Doença de Charcot-Marie-Tooth/terapia , Terapia Genética , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Transfecção
16.
J Virol ; 92(8)2018 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29386283

RESUMO

Kaposi's sarcoma (KS) tumors are derived from endothelial cells and express Kaposi's sarcoma-associated herpesvirus (KSHV) microRNAs (miRNAs). Although miRNA targets have been identified in B cell lymphoma-derived cells and epithelial cells, little has been done to characterize the KSHV miRNA targetome in endothelial cells. A recent innovation in the identification of miRNA targetomes, cross-linking, ligation, and sequencing of hybrids (CLASH), unambiguously identifies miRNAs and their targets by ligating the two species while both species are still bound within the RNA-induced silencing complex (RISC). We developed a streamlined quick CLASH (qCLASH) protocol that requires a lower cell input than the original method and therefore has the potential to be used on patient biopsy samples. Additionally, we developed a fast-growing, KSHV-negative endothelial cell line derived from telomerase-immortalized vein endothelial long-term culture (TIVE-LTC) cells. qCLASH was performed on uninfected cells and cells infected with either wild-type KSHV or a mutant virus lacking miR-K12-11/11*. More than 1,400 cellular targets of KSHV miRNAs were identified. Many of the targets identified by qCLASH lacked a canonical seed sequence match. Additionally, most target regions in mRNAs originated from the coding DNA sequence (CDS) rather than the 3' untranslated region (UTR). This set of genes includes some that were previously identified in B cells and some new genes that warrant further study. Pathway analysis of endothelial cell targets showed enrichment in cell cycle control, apoptosis, and glycolysis pathways, among others. Characterization of these new targets and the functional consequences of their repression will be important in furthering our understanding of the role of KSHV miRNAs in oncogenesis.IMPORTANCE KS lesions consist of endothelial cells latently infected with KSHV. Cells that make up these lesions express KSHV miRNAs. Identification of the targets of KSHV miRNAs will help us understand their role in viral oncogenesis. The cross-linking and sequencing of hybrids (CLASH) protocol is a method for unambiguously identifying miRNA targetomes. We developed a streamlined version of CLASH, called quick CLASH (qCLASH). qCLASH requires a lower initial input of cells than for its parent protocol. Additionally, a new fast-growing KSHV-negative endothelial cell line, named TIVE-EX-LTC cells, was established. qCLASH was performed on TIVE-EX-LTC cells latently infected with wild-type (WT) KSHV or a mutant virus lacking miR-K12-11/11*. A number of novel targets of KSHV miRNAs were identified, including targets of miR-K12-11, the ortholog of the cellular oncogenic miRNA (oncomiR) miR-155. Many of the miRNA targets were involved in processes related to oncogenesis, such as glycolysis, apoptosis, and cell cycle control.


Assuntos
Regiões 3' não Traduzidas , Células Endoteliais/virologia , Herpesvirus Humano 8/genética , MicroRNAs/genética , RNA Viral/genética , Sarcoma de Kaposi/genética , Análise de Sequência de RNA , Linhagem Celular Transformada , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Herpesvirus Humano 8/metabolismo , Humanos , MicroRNAs/metabolismo , RNA Viral/metabolismo , Sarcoma de Kaposi/metabolismo
17.
PLoS Pathog ; 13(7): e1006508, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28715488

RESUMO

Kaposi's sarcoma (KS) is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL). In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs). The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA) expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells.


Assuntos
Herpesvirus Humano 8/fisiologia , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Viral/metabolismo , Sarcoma de Kaposi/genética , Proteínas Virais/metabolismo , Linhagem Celular , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , MicroRNAs/genética , RNA Longo não Codificante/metabolismo , RNA Viral/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Proteínas Virais/genética , Latência Viral
18.
PLoS Pathog ; 12(4): e1005605, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27128969

RESUMO

Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3' untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies.


Assuntos
MicroRNAs , Proteínas Musculares/metabolismo , Neovascularização Patológica/metabolismo , RNA Viral , Fator de Transcrição STAT3/metabolismo , Sarcoma de Kaposi/patologia , Animais , Western Blotting , Movimento Celular/fisiologia , Herpesvirus Humano 8/fisiologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Camundongos Nus , Microscopia Confocal , Neovascularização Patológica/genética , Reação em Cadeia da Polimerase , Transdução de Sinais/fisiologia , Transfecção
19.
Genes Dev ; 24(2): 195-205, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20080955

RESUMO

Kaposi sarcoma herpesvirus (KSHV) induces transcriptional reprogramming of endothelial cells. In particular, KSHV-infected lymphatic endothelial cells (LECs) show an up-regulation of genes associated with blood vessel endothelial cells (BECs). Consequently, KSHV-infected tumor cells in Kaposi sarcoma are poorly differentiated endothelial cells, expressing markers of both LECs and BECs. MicroRNAs (miRNAs) are short noncoding RNA molecules that act post-transcriptionally to negatively regulate gene expression. Here we validate expression of the KSHV-encoded miRNAs in Kaposi sarcoma lesions and demonstrate that these miRNAs contribute to viral-induced reprogramming by silencing the cellular transcription factor MAF (musculoaponeurotic fibrosarcoma oncogene homolog). MAF is expressed in LECs but not in BECs. We identify a novel role for MAF as a transcriptional repressor, preventing expression of BEC-specific genes, thereby maintaining the differentiation status of LECs. These findings demonstrate that viral miRNAs could influence the differentiation status of infected cells, and thereby contribute to KSHV-induced oncogenesis.


Assuntos
Reprogramação Celular , Células Endoteliais/citologia , Células Endoteliais/patologia , Herpesvirus Humano 8/metabolismo , MicroRNAs/metabolismo , Proteína Oncogênica v-maf/metabolismo , Sarcoma de Kaposi/fisiopatologia , Diferenciação Celular , Linhagem Celular , Linhagem Celular Tumoral , Regulação para Baixo , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Regulação Viral da Expressão Gênica , Inativação Gênica , Células HeLa , Infecções por Herpesviridae/fisiopatologia , Herpesvirus Humano 8/genética , Humanos
20.
PLoS Pathog ; 11(11): e1005255, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545119

RESUMO

KSHV is a DNA tumor virus that causes Kaposi's sarcoma. Upon KSHV infection, only a limited number of latent genes are expressed. We know that KSHV infection regulates host gene expression, and hypothesized that latent genes also modulate the expression of host miRNAs. Aberrant miRNA expression contributes to the development of many types of cancer. Array-based miRNA profiling revealed that all six miRNAs of the oncogenic miR-17-92 cluster are up-regulated in KSHV infected endothelial cells. Among candidate KSHV latent genes, we found that vFLIP and vCyclin were shown to activate the miR-17-92 promoter, using luciferase assay and western blot analysis. The miR-17-92 cluster was previously shown to target TGF-ß signaling. We demonstrate that vFLIP and vCyclin induce the expression of the miR-17-92 cluster to strongly inhibit the TGF-ß signaling pathway by down-regulating SMAD2. Moreover, TGF-ß activity and SMAD2 expression were fully restored when antagomirs (inhibitors) of miR-17-92 cluster were transfected into cells expressing either vFLIP or vCyclin. In addition, we utilized viral genetics to produce vFLIP or vCyclin knock-out viruses, and studied the effects in infected TIVE cells. Infection with wildtype KSHV abolished expression of SMAD2 protein in these endothelial cells. While single-knockout mutants still showed a marked reduction in SMAD2 expression, TIVE cells infected by a double-knockout mutant virus were fully restored for SMAD2 expression, compared to non-infected TIVE cells. Expression of either vFLIP or vCycIin was sufficient to downregulate SMAD2. In summary, our data demonstrate that vFLIP and vCyclin induce the oncogenic miR-17-92 cluster in endothelial cells and thereby interfere with the TGF-ß signaling pathway. Manipulation of the TGF-ß pathway via host miRNAs represents a novel mechanism that may be important for KSHV tumorigenesis and angiogenesis, a hallmark of KS.


Assuntos
Herpesvirus Humano 8 , MicroRNAs/genética , Sarcoma de Kaposi/virologia , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular , Regulação para Baixo , Células Endoteliais/virologia , Humanos , Neovascularização Patológica/genética , Neovascularização Patológica/virologia , RNA Longo não Codificante , Sarcoma de Kaposi/irrigação sanguínea
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA