Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cell Mol Med ; 22(11): 5688-5697, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30256519

RESUMO

Early detection of PCa faces severe limitations as PSA displays poor-specificity/sensitivity. As we recently demonstrated that plasma ghrelin O-acyltransferase (GOAT)-enzyme is significantly elevated in PCa-patients compared with healthy-controls, using a limited patients-cohort, we aimed to further explore the potential of GOAT to improve PCa diagnosis using an ample patients-cohort (n = 312) and defining subgroups (i.e. significant PCa/metastatic patients, etc.) that could benefit from this biomarker. Plasma GOAT-levels were evaluated by ELISA in patients with (n = 183) and without (n = 129) PCa. Gleason Score ≥ 7 was considered clinically significant PCa. GOAT-levels were higher in PCa patients vs control patients, and in those with significant PCa vs non-significant PCa. GOAT-levels association with the diagnoses of significant PCa was independent from traditional clinical variables (i.e. PSA/age/DRE). Remarkably, GOAT outperformed PSA in patients with PSA-levels ranging 3-20 ng/mL for the significant PCa diagnosis [GOAT-AUC = 0.612 (0.531-0.693) vs PSA-AUC = 0.494 (0.407-0.580)]. A panel of key variables including GOAT/age/DRE/testosterone also outperformed the same panel but with PSA [AUC = 0.720 (0.710-0.730) vs AUC = 0.705 (0.695-0.716), respectively]. Notably, GOAT-levels could also represent a novel predictive biomarker of aggressiveness, as its levels are positively associated with Gleason Score and the presence of metastasis at the time of diagnoses. Altogether, our data reveal that GOAT-levels can be used as a non-invasive biomarker for significant PCa diagnosis in patients at risk of PCa (with PSA: 3-20 ng/mL).


Assuntos
Aciltransferases/sangue , Biomarcadores Tumorais/sangue , Próstata/patologia , Neoplasias da Próstata/sangue , Estudos de Coortes , Humanos , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Antígeno Prostático Específico , Neoplasias da Próstata/patologia
2.
J Clin Endocrinol Metab ; 106(2): e696-e710, 2021 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-33247590

RESUMO

CONTEXT: Prostate cancer (PCa) is one of the leading causes of cancer-related death among the male population worldwide. Unfortunately, current medical treatments fail to prevent PCa progression in a high percentage of cases; therefore, new therapeutic tools to tackle PCa are urgently needed. Biguanides and statins have emerged as antitumor agents for several endocrine-related cancers. OBJECTIVE: To evaluate: (1) the putative in vivo association between metformin and/or statins treatment and key tumor and clinical parameters and (2) the direct effects of different biguanides (metformin/buformin/phenformin), statins (atorvastatin/simvastatin/lovastatin), and their combination, on key functional endpoints and associated signalling mechanisms. METHODS: An exploratory/observational retrospective cohort of patients with PCa (n = 75) was analyzed. Moreover, normal and tumor prostate cells (normal [RWPE-cells/primary prostate cell cultures]; tumor [LNCaP/22RV1/PC3/DU145 cell lines]) were used to measure proliferation/migration/tumorsphere-formation/signalling pathways. RESULTS: The combination of metformin+statins in vivo was associated to lower Gleason score and longer biochemical recurrence-free survival. Moreover, biguanides and statins exerted strong antitumor actions (ie, inhibition of proliferation/migration/tumorsphere formation) on PCa cells, and that their combination further decreased; in addition, these functional parameters compared with the individual treatments. These actions were mediated through modulation of key oncogenic and metabolic signalling pathways (ie, AR/mTOR/AMPK/AKT/ERK) and molecular mediators (MKI67/cMYC/androgen receptor/cell-cycle inhibitors). CONCLUSIONS: Biguanides and statins significantly reduced tumor aggressiveness in PCa, with this effect being more potent (in vitro and in vivo) when both compounds are combined. Therefore, given the demonstrated clinical safety of biguanides and statins, our results suggest a potential therapeutic role of these compounds, especially their combination, for the treatment of PCa.


Assuntos
Adenocarcinoma/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biguanidas/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Adenocarcinoma/diagnóstico , Adenocarcinoma/patologia , Adenocarcinoma/cirurgia , Idoso , Biguanidas/administração & dosagem , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quimioterapia Adjuvante , Estudos de Coortes , Terapia Combinada , Estudos Transversais , Sinergismo Farmacológico , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Masculino , Pessoa de Meia-Idade , Células PC-3 , Projetos Piloto , Prostatectomia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Estudos Retrospectivos , Transdução de Sinais/efeitos dos fármacos , Espanha , Resultado do Tratamento
3.
J Clin Med ; 9(6)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498336

RESUMO

Certain components of the somatostatin-system play relevant roles in Prostate Cancer (PCa), whose most aggressive phenotype (Castration-Resistant-PCa (CRPC)) remains lethal nowadays. However, neuronostatin and the G protein-coupled receptor 107 (GPR107), two novel members of the somatostatin-system, have not been explored yet in PCa. Consequently, we investigated the pathophysiological role of NST/GPR107-system in PCa. GPR107 expression was analyzed in well-characterized PCa patient's cohorts, and functional/mechanistic assays were performed in response to GPR107-silencing and NST-treatment in PCa cells (androgen-dependent (AD: LNCaP) and androgen-independent (AI: 22Rv1/PC-3), which are cell models of hormone-sensitive and CRPC, respectively), and normal prostate cells (RWPE-1 cell-line). GPR107 was overexpressed in PCa and associated with key clinical parameters (e.g., advance stage of PCa, presence of vascular invasion and metastasis). Furthermore, GPR107-silencing inhibited proliferation/migration rates in AI-PCa-cells and altered key genes and oncogenic signaling-pathways involved in PCa aggressiveness (i.e., KI67/CDKN2D/MMP9/PRPF40A, SST5TMD4/AR-v7/In1-ghrelin/EZH2 splicing-variants and AKT-signaling). Interestingly, NST treatment inhibited proliferation/migration only in AI-PCa cells and evoked an identical molecular response than GPR107-silencing. Finally, NST decreased GPR107 expression exclusively in AI-PCa-cells, suggesting that part of the specific antitumor effects of NST could be mediated through a GPR107-downregulation. Altogether, NST/GPR107-system could represent a valuable diagnostic and prognostic tool and a promising novel therapeutic target for PCa and CRPC.

4.
EBioMedicine ; 51: 102547, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31902674

RESUMO

BACKGROUND: Dysregulation of splicing variants (SVs) expression has recently emerged as a novel cancer hallmark. Although the generation of aberrant SVs (e.g. AR-v7/sst5TMD4/etc.) is associated to prostate-cancer (PCa) aggressiveness and/or castration-resistant PCa (CRPC) development, whether the molecular reason behind such phenomena might be linked to a dysregulation of the cellular machinery responsible for the splicing process [spliceosome-components (SCs) and splicing-factors (SFs)] has not been yet explored. METHODS: Expression levels of 43 key SCs and SFs were measured in two cohorts of PCa-samples: 1) Clinically-localized formalin-fixed paraffin-embedded PCa-samples (n = 84), and 2) highly-aggressive freshly-obtained PCa-samples (n = 42). FINDINGS: A profound dysregulation in the expression of multiple components of the splicing machinery (i.e. 7 SCs/19 SFs) were found in PCa compared to their non-tumor adjacent-regions. Notably, overexpression of SNRNP200, SRSF3 and SRRM1 (mRNA and/or protein) were associated with relevant clinical (e.g. Gleason score, T-Stage, metastasis, biochemical recurrence, etc.) and molecular (e.g. AR-v7 expression) parameters of aggressiveness in PCa-samples. Functional (cell-proliferation/migration) and mechanistic [gene-expression (qPCR) and protein-levels (western-blot)] assays were performed in normal prostate cells (PNT2) and PCa-cells (LNCaP/22Rv1/PC-3/DU145 cell-lines) in response to SNRNP200, SRSF3 and/or SRRM1 silencing (using specific siRNAs) revealed an overall decrease in proliferation/migration-rate in PCa-cells through the modulation of key oncogenic SVs expression levels (e.g. AR-v7/PKM2/XBP1s) and alteration of oncogenic signaling pathways (e.g. p-AKT/p-JNK). INTERPRETATION: These results demonstrate that the spliceosome is drastically altered in PCa wherein SNRNP200, SRSF3 and SRRM1 could represent attractive novel diagnostic/prognostic and therapeutic targets for PCa and CRPC.


Assuntos
Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Splicing de RNA/genética , Idoso , Benzamidas , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Splicing de RNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Spliceossomos/metabolismo
5.
J Clin Med ; 8(12)2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766715

RESUMO

Recent data suggested that plasma Ghrelin O-Acyl Transferase enzyme (GOAT) levels could represent a new diagnostic biomarker for prostate cancer (PCa). In this study, we aimed to explore the diagnostic and prognostic/aggressiveness capacity of GOAT in urine, as well as to interrogate its putative pathophysiological role in PCa. We analysed urine/plasma levels of GOAT in a cohort of 993 patients. In vitro (i.e., cell-proliferation) and in vivo (tumor-growth in a xenograft-model) approaches were performed in response to the modulation of GOAT expression/activity in PCa cells. Our results demonstrate that plasma and urine GOAT levels were significantly elevated in PCa patients compared to controls. Remarkably, GOAT significantly outperformed PSA in the diagnosis of PCa and significant PCa in patients with PSA levels ranging from 3 to 10 ng/mL (the so-called PSA grey-zone). Additionally, urine GOAT levels were associated to clinical (e.g., Gleason-score, PSA levels) and molecular (e.g., CDK2/CDK6/CDKN2A expression) aggressiveness parameters. Indeed, GOAT overexpression increased, while its silencing/blockade decreased cell-proliferation in PCa cells. Moreover, xenograft tumors derived from GOAT-overexpressing PCa (DU145) cells were significantly higher than those derived from the mock-overexpressing cells. Altogether, our results demonstrate that GOAT could be used as a diagnostic and aggressiveness marker in urine and a therapeutic target in PCa.

6.
Transl Res ; 212: 89-103, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31344348

RESUMO

Prostate cancer (PCa) is one of the most common cancers types among men. Development and progression of PCa is associated with aberrant expression of oncogenic splicing-variants (eg, AR-v7), suggesting that dysregulation of the splicing process might represent a potential actionable target for PCa. Expression levels (mRNA and protein) of SF3B1, one of the main components of the splicing machinery, were analyzed in different cohorts of PCa patients (clinically localized [n = 84], highly aggressive PCa [n = 42], and TCGA dataset [n = 497]). Functional and mechanistic assays were performed in response to pladienolide-B in nontumor and tumor-derived prostate cells. Our results revealed that SF3B1 was overexpressed in PCa tissues and its levels were associated with clinically relevant PCa-aggressive features (eg, metastasis/AR-v7 expression). Moreover, inhibition of SF3B1 activity by pladienolide-B reduced functional parameters of aggressiveness (proliferation/migration/tumorspheres-formation/apoptosis) in PCa cell lines, irrespective of AR-v7 expression, and reduced viability of primary PCa cells. Antitumor actions of pladienolide-B involved: (1) inhibition of PI3K/AKT and JNK signaling pathways, (2) modulation of tumor markers and splicing variants (AR-v7/In1-ghrelin), and (3) regulation of key components of mRNA homeostasis-associated machineries (spliceosome/SURF/EJC). Altogether, our results demonstrated that SF3B1 is overexpressed and associated with malignant features in PCa, and its inhibition reduces PCa aggressiveness, suggesting that SF3B1 could represent a novel prognostic biomarker and a therapeutic target in PCa.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/sangue , Fosfoproteínas/metabolismo , Neoplasias da Próstata/metabolismo , Fatores de Processamento de RNA/metabolismo , Idoso , Linhagem Celular Tumoral , Proliferação de Células , Estudos de Coortes , Sistemas de Liberação de Medicamentos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/genética , Prognóstico , Neoplasias da Próstata/tratamento farmacológico , Fatores de Processamento de RNA/genética , Spliceossomos/química
7.
J Clin Med ; 8(9)2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500112

RESUMO

Engrailed variant-2 (EN2) has been suggested as a potential diagnostic biomarker; however, its presence and functional role in prostate cancer (PCa) cells is still controversial or unknown. Here, we analyzed 1) the expression/secretion profile of EN2 in five independent samples cohorts from PCa patients and controls (prostate tissues and/or urine) to determine its utility as a PCa biomarker; and 2) the functional role of EN2 in normal (RWPE1) and tumor (LNCaP/22Rv1/PC3) prostate cells to explore its potential value as therapeutic target. EN2 was overexpressed in our two cohorts of PCa tissues compared to control and in tumor cell lines compared with normal-like prostate cells. This profile was corroborated in silico in three independent data sets [The Cancer Genome Atlas(TCGA)/Memorial Sloan Kettering Cancer Center (MSKCC)/Grasso]. Consistently, urine EN2 levels were elevated and enabled discrimination between PCa and control patients. EN2 treatment increased cell proliferation in LNCaP/22Rv1/PC3 cells, migration in RWPE1/PC3 cells, and PSA secretion in LNCaP cells. These effects were associated, at least in the androgen-sensitive LNCaP cells, with increased AKT and androgen-receptor phosphorylation levels and with modulation of key cancer-associated genes. Consistently, EN2 treatment also regulated androgen-receptor activity (full-length and splicing variants) in androgen-sensitive 22Rv1 cells. Altogether, this study demonstrates the potential utility of EN2 as a non-invasive diagnostic biomarker for PCa and provides novel and valuable information to further investigate its putative utility to develop new therapeutic tools in PCa.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA