Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(8): 4472-4492, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33836079

RESUMO

Skeletal muscle is a dynamic tissue the size of which can be remodeled through the concerted actions of various cues. Here, we investigated the skeletal muscle transcriptional program and identified key tissue-specific regulatory genetic elements. Our results show that Myod1 is bound to numerous skeletal muscle enhancers in collaboration with the glucocorticoid receptor (GR) to control gene expression. Remarkably, transcriptional activation controlled by these factors occurs through direct contacts with the promoter region of target genes, via the CpG-bound transcription factor Nrf1, and the formation of Ctcf-anchored chromatin loops, in a myofiber-specific manner. Moreover, we demonstrate that GR negatively controls muscle mass and strength in mice by down-regulating anabolic pathways. Taken together, our data establish Myod1, GR and Nrf1 as key players of muscle-specific enhancer-promoter communication that orchestrate myofiber size regulation.


Assuntos
Cromatina/metabolismo , Elementos Facilitadores Genéticos , Músculo Esquelético/metabolismo , Proteína MyoD/metabolismo , Fator 1 Nuclear Respiratório/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Linhagem Celular , Cromatina/genética , Sequenciamento de Cromatina por Imunoprecipitação , Regulação da Expressão Gênica/genética , Histonas/genética , Histonas/metabolismo , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Força Muscular/genética , Músculo Esquelético/fisiologia , Proteína MyoD/genética , Mioblastos/metabolismo , Fator 1 Nuclear Respiratório/genética , Receptores de Glucocorticoides/genética , Proteínas Recombinantes
2.
Adv Exp Med Biol ; 1194: 359-371, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468552

RESUMO

Monoclonal antibodies (mAbs) constitute a promising class of therapeutics, since ca. 25% of all biotech drugs in development are mAbs. Even though their therapeutic value is now well established, human- and murine-derived mAbs do have deficiencies, such as short in vivo lifespan and low stability. However, the most difficult obstacle to overcome, toward the exploitation of mAbs for disease treatment, is the prevention of the formation of protein aggregates. ANTISOMA is a pipeline for the reduction of the aggregation tendency of mAbs through the decrease in their intrinsic aggregation propensity, based on an automated amino acid substitution approach. The method takes into consideration the special features of mAbs and aims at proposing specific point mutations that could lead to the redesign of those promising therapeutics, without affecting their epitope-binding ability. The method is available online at http://bioinformatics.biol.uoa.gr/ANTISOMA .


Assuntos
Anticorpos Monoclonais , Biologia Computacional , Agregação Patológica de Proteínas , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Monoclonais/uso terapêutico , Biologia Computacional/métodos , Epitopos/genética , Humanos , Camundongos , Agregação Patológica de Proteínas/tratamento farmacológico
3.
J Cachexia Sarcopenia Muscle ; 14(4): 1707-1720, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37208984

RESUMO

BACKGROUND: Androgens are anabolic steroid hormones that exert their function by binding to the androgen receptor (AR). We have previously established that AR deficiency in limb muscles impairs sarcomere myofibrillar organization and decreases muscle strength in male mice. However, despite numerous studies performed in men and rodents, the signalling pathways controlled by androgens via their receptor in skeletal muscles remain poorly understood. METHODS: Male ARskm-/y (n = 7-12) and female ARskm-/- mice (n = 9), in which AR is selectively ablated in myofibres of musculoskeletal tissue, and male AR(i)skm-/y , in which AR is selectively ablated in post-mitotic skeletal muscle myofibres (n = 6), were generated. Longitudinal monitoring of body weight, blood glucose, insulin, lipids and lipoproteins was performed, alongside metabolomic analyses. Glucose metabolism was evaluated in C2C12 cells treated with 5α-dihydrotestosterone (DHT) and the anti-androgen flutamide (n = 6). Histological analyses on macroscopic and ultrastructural levels of longitudinal and transversal muscle sections were conducted. The transcriptome of gastrocnemius muscles from control and ARskm-/y mice was analysed at the age of 9 weeks (P < 0.05, 2138 differentially expressed genes) and validated by RT-qPCR analysis. The AR (4691 peaks with false discovery rate [FDR] < 0.1) and H3K4me2 (47 225 peaks with FDR < 0.05) cistromes in limb muscles were determined in 11-week-old wild-type mice. RESULTS: We show that disrupting the androgen/AR axis impairs in vivo glycolytic activity and fastens the development of type 2 diabetes in male, but not in female mice. In agreement, treatment with DHT increases glycolysis in C2C12 myotubes by 30%, whereas flutamide has an opposite effect. Fatty acids are less efficiently metabolized in skeletal muscles of ARskm-/y mice and accumulate in cytoplasm, despite increased transcript levels of genes encoding key enzymes of beta-oxidation and mitochondrial content. Impaired glucose and fatty acid metabolism in AR-deficient muscle fibres is associated with 30% increased lysine and branched-chain amino acid catabolism, decreased polyamine biosynthesis and disrupted glutamate transamination. This metabolic switch generates ammonia (2-fold increase) and oxidative stress (30% increased H2 O2 levels), which impacts mitochondrial functions and causes necrosis in <1% fibres. We unravel that AR directly activates the transcription of genes involved in glycolysis, oxidative metabolism and muscle contraction. CONCLUSIONS: Our study provides important insights into diseases caused by impaired AR function in musculoskeletal system and delivers a deeper understanding of skeletal muscle pathophysiological dynamics that is instrumental to develop effective treatment for muscle disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores Androgênicos , Animais , Feminino , Masculino , Camundongos , Androgênios/farmacologia , Androgênios/metabolismo , Di-Hidrotestosterona , Flutamida/metabolismo , Contração Muscular , Músculo Esquelético/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
4.
Sci Adv ; 7(31)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34330705

RESUMO

Epidemiological data have linked vitamin D deficiency to the onset and severity of various cancers, including prostate cancer, and although in vitro studies have demonstrated anticancer activities for vitamin D, clinical trials provided conflicting results. To determine the impact of vitamin D signaling on prostatic precancerous lesions, we treated genetically engineered Pten(i)pe-/- mice harboring prostatic intraepithelial neoplasia (PIN) with Gemini-72, a vitamin D analog with reported anticancer activities. We show that this analog induces apoptosis in senescent PINs, normalizes extracellular matrix remodeling by stromal fibroblasts, and reduces the prostatic infiltration of immunosuppressive myeloid-derived suppressor cells. Moreover, single-cell RNA-sequencing analysis demonstrates that while a subset of luminal cells expressing Krt8, Krt4, and Tacstd2 (termed luminal-C cells) is lost by such a treatment, antiapoptotic pathways are induced in persistent luminal-C cells. Therefore, our findings delineate the distinct responses of PINs and the microenvironment to Gemini-72, and shed light on mechanisms that limit treatment's efficacy.


Assuntos
Lesões Pré-Cancerosas , Neoplasia Prostática Intraepitelial , Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Lesões Pré-Cancerosas/tratamento farmacológico , Neoplasia Prostática Intraepitelial/tratamento farmacológico , Neoplasia Prostática Intraepitelial/metabolismo , Neoplasia Prostática Intraepitelial/patologia , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Análise de Célula Única , Microambiente Tumoral , Vitamina D/farmacologia , Vitamina D/uso terapêutico
5.
Nat Commun ; 11(1): 6249, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33288743

RESUMO

The bioactive vitamin D3, 1α,25(OH)2D3, plays a central role in calcium homeostasis by controlling the activity of the vitamin D receptor (VDR) in various tissues. Hypercalcemia secondary to high circulating levels of vitamin D3 leads to hypercalciuria, nephrocalcinosis and renal dysfunctions. Current therapeutic strategies aim at limiting calcium intake, absorption and resorption, or 1α,25(OH)2D3 synthesis, but are poorly efficient. In this study, we identify WBP4 as a new VDR interactant, and demonstrate that it controls VDR subcellular localization. Moreover, we show that the vitamin D analogue ZK168281 enhances the interaction between VDR and WBP4 in the cytosol, and normalizes the expression of VDR target genes and serum calcium levels in 1α,25(OH)2D3-intoxicated mice. As ZK168281 also blunts 1α,25(OH)2D3-induced VDR signaling in fibroblasts of a patient with impaired vitamin D degradation, this VDR antagonist represents a promising therapeutic option for 1α,25(OH)2D3-induced hypercalcemia.


Assuntos
Cálcio/metabolismo , Hipercalcemia/metabolismo , Receptores de Calcitriol/metabolismo , Vitamina D/farmacologia , Animais , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Citosol/metabolismo , Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Hipercalcemia/genética , Hipercalcemia/prevenção & controle , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Receptores de Calcitriol/genética , Vitamina D/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA