Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Proc Natl Acad Sci U S A ; 112(2): 424-9, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548157

RESUMO

Mammalian skeletal muscle is broadly characterized by the presence of two distinct categories of muscle fibers called type I "red" slow twitch and type II "white" fast twitch, which display marked differences in contraction strength, metabolic strategies, and susceptibility to fatigue. The relative representation of each fiber type can have major influences on susceptibility to obesity, diabetes, and muscular dystrophies. However, the molecular factors controlling fiber type specification remain incompletely defined. In this study, we describe the control of fiber type specification and susceptibility to metabolic disease by folliculin interacting protein-1 (Fnip1). Using Fnip1 null mice, we found that loss of Fnip1 increased the representation of type I fibers characterized by increased myoglobin, slow twitch markers [myosin heavy chain 7 (MyH7), succinate dehydrogenase, troponin I 1, troponin C1, troponin T1], capillary density, and mitochondria number. Cultured Fnip1-null muscle fibers had higher oxidative capacity, and isolated Fnip1-null skeletal muscles were more resistant to postcontraction fatigue relative to WT skeletal muscles. Biochemical analyses revealed increased activation of the metabolic sensor AMP kinase (AMPK), and increased expression of the AMPK-target and transcriptional coactivator PGC1α in Fnip1 null skeletal muscle. Genetic disruption of PGC1α rescued normal levels of type I fiber markers MyH7 and myoglobin in Fnip1-null mice. Remarkably, loss of Fnip1 profoundly mitigated muscle damage in a murine model of Duchenne muscular dystrophy. These results indicate that Fnip1 controls skeletal muscle fiber type specification and warrant further study to determine whether inhibition of Fnip1 has therapeutic potential in muscular dystrophy diseases.


Assuntos
Proteínas de Transporte/fisiologia , Fibras Musculares de Contração Rápida/patologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/patologia , Fibras Musculares de Contração Lenta/fisiologia , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Endogâmicos mdx , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/patologia , Complexos Multiproteicos/metabolismo , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Distrofia Muscular de Duchenne/genética , Mioglobina/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Am J Ophthalmol ; 259: 172-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38101593

RESUMO

PURPOSE: To assess the therapeutic effect of tinted lenses (FL-41) on photophobia and light-evoked brain activity using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular surface pain. DESIGN: Prospective case series. METHODS: 25 subjects from the Miami veterans affairs (VA) eye clinic were recruited based on the presence of chronic ocular pain, dry eye symptoms, and photophobia. Using a 3T MRI scanner, subjects underwent 2 fMRI scans using an event-related design based on light stimuli: one scan while wearing FL-41 lenses and one without. Unpleasantness ratings evoked by the light stimuli were collected after each scan. RESULTS: With FL-41 lenses, subjects reported decreased (n = 19), maintained (n = 2), or increased (n = 4) light-evoked unpleasantness ratings. Group analysis at baseline (no lens) revealed significant light evoked responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral insula, bilateral frontal pole, visual, precuneus, paracingulate, and anterior cingulate cortices (ACC) as well as cerebellar vermis, bilateral cerebellar hemispheric lobule VI, and bilateral cerebellar crus I and II. With FL-41 lenses, light-evoked responses were significantly decreased in bilateral S1, bilateral S2, bilateral insular, right temporal pole, precuneus, ACC, and paracingulate cortices as well as bilateral cerebellar hemispheric lobule VI. CONCLUSION: FL-41 lenses modulated photophobia symptoms in some individuals with chronic ocular pain. In conjunction, FL-41 lenses decreased activation in cortical areas involved in processing affective and sensory-discriminative dimensions of pain. Further research into these relationships will advance the ability to provide precision therapy for individuals with ocular pain.


Assuntos
Dor , Fotofobia , Humanos , Fotofobia/etiologia , Encéfalo , Dor Ocular/diagnóstico , Dor Ocular/tratamento farmacológico , Dor Ocular/etiologia , Imageamento por Ressonância Magnética/métodos , Vias Neurais/fisiologia
3.
Am J Ophthalmol ; 246: 20-30, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36223850

RESUMO

PURPOSE: To examine neural mechanisms underlying photophobia in individuals with chronic ocular surface pain by using functional magnetic resonance imaging (fMRI). DESIGN: Cross-sectional case/control analysis. METHODS: A total of 16 individuals from the Miami Veterans Affairs eye clinic underwent comprehensive ocular surface evaluations and were surveyed for ocular surface symptoms. Case patients included patients who reported chronic ocular surface pain symptoms and light sensitivity at least most of the time over 1 week. Controls included persons without chronic ocular surface pain who reported no or minimal light sensitivity. All patients viewed light stimuli during 2 fMRI scans, one before and one after topical anesthetic instillation, and rated their level of pain intensity to the stimulus at the end of each scan. Areas of brain activation in response to light stimuli presentation were correlated with pain responses and examined post- vs pre-anesthesia. RESULTS: Case patients (n = 8) reported higher pain intensity ratings than controls (n = 8) in response to light stimuli during fMRI. Case patient ratings correlated more with light-evoked activation in pain-related areas within the trigeminal brainstem, primary somatosensory cortex (S1), anterior mid-cingulate cortex (aMCC), and insula than in controls. Topical anesthesia led to varying responses in pain ratings among case patients as well as decreased light-evoked activation in S1 and aMCC. CONCLUSIONS: The trigeminal nociceptive system may contribute to photophobia in individuals with chronic ocular surface pain. We demonstrate modulation of cortical structures in this pathway with topically applied anesthetic to the eyes. Further understanding of modulatory interactions that govern ocular surface pain and photophobia is critical for developing effective, precision-based therapies.


Assuntos
Dor Ocular , Fotofobia , Humanos , Fotofobia/diagnóstico , Fotofobia/etiologia , Estudos Transversais , Dor Ocular/diagnóstico , Dor Ocular/etiologia , Dor , Neuroimagem , Imageamento por Ressonância Magnética/métodos
4.
Radiol Case Rep ; 18(4): 1596-1600, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36852288

RESUMO

Hemarthrosis secondary to heparin use is a scarce event, especially in patients with no underlying thrombophilia or platelet disorders. Although previously associated with thrombophilia, platelet disorders, or secondary to fibrinolytic therapy, to date, there are very few reported cases in contemporary literature for heparin-induced hemarthrosis. In this article, we report a case of left shoulder joint inferior subluxation secondary to heparin-induced hemarthrosis in an 81-year-old male with an extensive cardiac history and multiple comorbidities. This case report depicts a rare event and discusses its clinical implications aiding healthcare professionals in an early diagnosis and timely management.

5.
Front Neurosci ; 17: 1202341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37404468

RESUMO

Introduction: To examine the effect of botulinum toxin A (BoNT-A) on neural mechanisms underlying pain and photophobia using functional magnetic resonance imaging (fMRI) in individuals with chronic ocular pain. Methods: Twelve subjects with chronic ocular pain and light sensitivity were recruited from the Miami Veterans Affairs eye clinic. Inclusion criteria were: (1) chronic ocular pain; (2) presence of ocular pain over 1 week recall; and (3) presence of photophobia. All individuals underwent an ocular surface examination to capture tear parameters before and 4-6 weeks after BoNT-A injections. Using an event-related fMRI design, subjects were presented with light stimuli during two fMRI scans, once before and 4-6 weeks after BoNT-A injection. Light evoked unpleasantness ratings were reported by subjects after each scan. Whole brain blood oxygen level dependent (BOLD) responses to light stimuli were analyzed. Results: At baseline, all subjects reported unpleasantness with light stimulation (average: 70.8 ± 32.0). Four to six weeks after BoNT-A injection, unpleasantness scores decreased (48.1 ± 33.6), but the change was not significant. On an individual level, 50% of subjects had decreased unpleasantness ratings in response to light stimulation compared to baseline ("responders," n = 6), while 50% had equivalent (n = 3) or increased (n = 3) unpleasantness ("non-responders"). At baseline, several differences were noted between responders and non-responders; responders had higher baseline unpleasantness ratings to light, higher symptoms of depression, and more frequent use of antidepressants and anxiolytics, compared to non-responders. Group analysis at baseline displayed light-evoked BOLD responses in bilateral primary somatosensory (S1), bilateral secondary somatosensory (S2), bilateral anterior insula, paracingulate gyrus, midcingulate cortex (MCC), bilateral frontal pole, bilateral cerebellar hemispheric lobule VI, vermis, bilateral cerebellar crus I and II, and visual cortices. BoNT-A injections significantly decreased light evoked BOLD responses in bilateral S1, S2 cortices, cerebellar hemispheric lobule VI, cerebellar crus I, and left cerebellar crus II. BoNT-A responders displayed activation of the spinal trigeminal nucleus at baseline where non-responders did not. Discussion: BoNT-A injections modulate light-evoked activation of pain-related brain systems and photophobia symptoms in some individuals with chronic ocular pain. These effects are associated with decreased activation in areas responsible for processing the sensory-discriminative, affective, dimensions, and motor responses to pain.

6.
Front Neurol ; 14: 1265082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033775

RESUMO

Introduction: The factors that mediate the expression of ocular pain and the mechanisms that promote chronic ocular pain symptoms are poorly understood. Central nervous system involvement has been postulated based on observations of pain out of proportion to nociceptive stimuli in some individuals. This investigation focused on understanding functional connectivity between brain regions implicated in chronic pain in persons reporting ocular pain symptoms. Methods: We recruited a total of 53 persons divided into two cohorts: persons who reported no ocular pain, and persons who reported chronic ocular pain, irrespective of ocular surface findings. We performed a resting state fMRI investigation that was focused on subcortical brain structures including the trigeminal nucleus and performed a brief battery of ophthalmological examinations. Results: Persons in the pain cohort reported higher levels of pain symptoms relating to neuropathic pain and ocular surface disease, as well as more abnormal tear metrics (stability and tear production). Functional connectivity analysis between groups evinced multiple connections exemplifying both increases and decreases in connectivity including regions such as the trigeminal nucleus, amygdala, and sub-regions of the thalamus. Exploratory analysis of the pain cohort integrating clinical and brain function metrics highlighted subpopulations that showed unique phenotypes providing insight into pain mechanisms. Discussion: Study findings support centralized involvement in those reporting ocular-based pain and allude to mechanisms through which pain treatment services may be directed in future research.

7.
Ochsner J ; 22(2): 169-175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756592

RESUMO

Background: Mucormycosis is a serious angioinvasive fungal infection. Immunocompromised patients are more likely to be susceptible to mucormycosis than immunocompetent individuals. Cerebral mucormycosis has been reported, but cases have primarily been unilateral. We report a case of bilateral cerebral mucormycosis in an immunocompetent patient. Case Report: A 37-year-old female with no significant medical history was transferred to our tertiary center after cerebrospinal fluid profile following a lumbar puncture at an outside hospital suggested bacterial meningitis. Computed tomography of the head revealed hypodensity and cerebral edema in the left basal ganglia, and magnetic resonance imaging (MRI) brain showed increased T2 signal and mass-like configuration centered in the left basal ganglia. During her hospital stay, she had neurologic decompensation with respiratory failure. She was intubated and placed on mechanical ventilation. Repeat MRI brain revealed evolving cerebral edema signal and interval development of progression across the midline involving the right basal ganglia. Because of the aggressive nature of the lesion and cerebral edema, she underwent a biopsy with placement of an external ventricular drain. Despite medical and surgical interventions, she neurologically worsened and died. Histopathologic evaluation of the biopsied lesion revealed numerous fungal hyphae consistent with mucormycosis. Conclusion: Our patient was not immunocompromised, and this case highlights the clinical challenges in initiating immunosuppressive therapy in a patient with rapidly progressive central nervous system disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA