Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Circulation ; 140(8): 681-693, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31185731

RESUMO

BACKGROUND: Abnormal calcium (Ca2+) release from the sarcoplasmic reticulum (SR) contributes to the pathogenesis of atrial fibrillation (AF). Increased phosphorylation of 2 proteins essential for normal SR-Ca2+ cycling, the type-2 ryanodine receptor (RyR2) and phospholamban (PLN), enhances the susceptibility to AF, but the underlying mechanisms remain unclear. Protein phosphatase 1 (PP1) limits steady-state phosphorylation of both RyR2 and PLN. Proteomic analysis uncovered a novel PP1-regulatory subunit (PPP1R3A [PP1 regulatory subunit type 3A]) in the RyR2 macromolecular channel complex that has been previously shown to mediate PP1 targeting to PLN. We tested the hypothesis that reduced PPP1R3A levels contribute to AF pathogenesis by reducing PP1 binding to both RyR2 and PLN. METHODS: Immunoprecipitation, mass spectrometry, and complexome profiling were performed from the atrial tissue of patients with AF and from cardiac lysates of wild-type and Pln-knockout mice. Ppp1r3a-knockout mice were generated by CRISPR-mediated deletion of exons 2 to 3. Ppp1r3a-knockout mice and wild-type littermates were subjected to in vivo programmed electrical stimulation to determine AF susceptibility. Isolated atrial cardiomyocytes were used for Stimulated Emission Depletion superresolution microscopy and confocal Ca2+ imaging. RESULTS: Proteomics identified the PP1-regulatory subunit PPP1R3A as a novel RyR2-binding partner, and coimmunoprecipitation confirmed PPP1R3A binding to RyR2 and PLN. Complexome profiling and Stimulated Emission Depletion imaging revealed that PLN is present in the PPP1R3A-RyR2 interaction, suggesting the existence of a previously unknown SR nanodomain composed of both RyR2 and PLN/sarco/endoplasmic reticulum calcium ATPase-2a macromolecular complexes. This novel RyR2/PLN/sarco/endoplasmic reticulum calcium ATPase-2a complex was also identified in human atria. Genetic ablation of Ppp1r3a in mice impaired binding of PP1 to both RyR2 and PLN. Reduced PP1 targeting was associated with increased phosphorylation of RyR2 and PLN, aberrant SR-Ca2+ release in atrial cardiomyocytes, and enhanced susceptibility to pacing-induced AF. Finally, PPP1R3A was progressively downregulated in the atria of patients with paroxysmal and persistent (chronic) AF. CONCLUSIONS: PPP1R3A is a novel PP1-regulatory subunit within the RyR2 channel complex. Reduced PPP1R3A levels impair PP1 targeting and increase phosphorylation of both RyR2 and PLN. PPP1R3A deficiency promotes abnormal SR-Ca2+ release and increases AF susceptibility in mice. Given that PPP1R3A is downregulated in patients with AF, this regulatory subunit may represent a new target for AF therapeutic strategies.


Assuntos
Fibrilação Atrial/metabolismo , Miócitos Cardíacos/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Animais , Fibrilação Atrial/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Camundongos , Camundongos Knockout , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 1/metabolismo , Proteômica , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Transdução de Sinais
2.
Circ Res ; 123(8): 953-963, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30355031

RESUMO

RATIONALE: Autosomal-dominant mutations in ryanodine receptor type 2 ( RYR2) are responsible for ≈60% of all catecholaminergic polymorphic ventricular tachycardia. Dysfunctional RyR2 subunits trigger inappropriate calcium leak from the tetrameric channel resulting in potentially lethal ventricular tachycardia. In vivo CRISPR/Cas9-mediated gene editing is a promising strategy that could be used to eliminate the disease-causing Ryr2 allele and hence rescue catecholaminergic polymorphic ventricular tachycardia. OBJECTIVE: To determine if somatic in vivo genome editing using the CRISPR/Cas9 system delivered by adeno-associated viral (AAV) vectors could correct catecholaminergic polymorphic ventricular tachycardia arrhythmias in mice heterozygous for RyR2 mutation R176Q (R176Q/+). METHODS AND RESULTS: Guide RNAs were designed to specifically disrupt the R176Q allele in the R176Q/+ mice using the SaCas9 ( Staphylococcus aureus Cas9) genome editing system. AAV serotype 9 was used to deliver Cas9 and guide RNA to neonatal mice by single subcutaneous injection at postnatal day 10. Strikingly, none of the R176Q/+ mice treated with AAV-CRISPR developed arrhythmias, compared with 71% of R176Q/+ mice receiving control AAV serotype 9. Total Ryr2 mRNA and protein levels were significantly reduced in R176Q/+ mice, but not in wild-type littermates. Targeted deep sequencing confirmed successful and highly specific editing of the disease-causing R176Q allele. No detectable off-target mutagenesis was observed in the wild-type Ryr2 allele or the predicted putative off-target site, confirming high specificity for SaCas9 in vivo. In addition, confocal imaging revealed that gene editing normalized the enhanced Ca2+ spark frequency observed in untreated R176Q/+ mice without affecting systolic Ca2+ transients. CONCLUSIONS: AAV serotype 9-based delivery of the SaCas9 system can efficiently disrupt a disease-causing allele in cardiomyocytes in vivo. This work highlights the potential of somatic genome editing approaches for the treatment of lethal autosomal-dominant inherited cardiac disorders, such as catecholaminergic polymorphic ventricular tachycardia.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Terapia Genética/métodos , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/terapia , Potenciais de Ação/genética , Animais , Proteína 9 Associada à CRISPR/genética , Sinalização do Cálcio/genética , Dependovirus/genética , Modelos Animais de Doenças , Predisposição Genética para Doença , Vetores Genéticos , Frequência Cardíaca/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , RNA Guia de Cinetoplastídeos/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatologia
3.
Circulation ; 138(15): 1569-1581, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29669786

RESUMO

BACKGROUND: Heart failure (HF) is a complex disease with a rising prevalence despite advances in treatment. Protein phosphatase 1 (PP1) has long been implicated in HF pathogenesis, but its exact role is both unclear and controversial. Most previous studies measured only the PP1 catalytic subunit (PP1c) without investigating its diverse set of interactors, which confer localization and substrate specificity to the holoenzyme. In this study, we define the PP1 interactome in cardiac tissue and test the hypothesis that this interactome becomes rearranged during HF progression at the level of specific PP1c interactors. METHODS: Mice were subjected to transverse aortic constriction and grouped on the basis of ejection fraction into sham, hypertrophy, moderate HF (ejection fraction, 30%-40%), and severe HF (ejection fraction <30%). Cardiac lysates were subjected to affinity purification with anti-PP1c antibodies followed by high-resolution mass spectrometry. PP1 regulatory subunit 7 (Ppp1r7) was knocked down in mouse cardiomyocytes and HeLa cells with adeno-associated virus serotype 9 and siRNA, respectively. Calcium imaging was performed on isolated ventricular myocytes. RESULTS: Seventy-one and 98 PP1c interactors were quantified from mouse cardiac and HeLa lysates, respectively, including many novel interactors and protein complexes. This represents the largest reproducible PP1 interactome data set ever captured from any tissue, including both primary and secondary/tertiary interactors. Nine PP1c interactors with changes in their binding to PP1c were strongly associated with HF progression, including 2 known (Ppp1r7 and Ppp1r18) and 7 novel interactors. Within the entire cardiac PP1 interactome, Ppp1r7 had the highest binding to PP1c. Cardiac-specific knockdown in mice led to cardiac dysfunction and disruption of calcium release from the sarcoplasmic reticulum. CONCLUSIONS: PP1 is best studied at the level of its interactome, which undergoes significant rearrangement during HF progression. The 9 key interactors that are associated with HF progression may represent potential targets in HF therapy. In particular, Ppp1r7 may play a central role in regulating the PP1 interactome by acting as a competitive molecular "sponge" of PP1c.


Assuntos
Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Mapas de Interação de Proteínas , Proteína Fosfatase 1/metabolismo , Animais , Sinalização do Cálcio , Dependovirus/genética , Modelos Animais de Doenças , Progressão da Doença , Feminino , Vetores Genéticos , Células HeLa , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia , Ligação Proteica , Proteína Fosfatase 1/deficiência , Proteína Fosfatase 1/genética , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Fatores de Tempo
4.
Exp Physiol ; 104(4): 568-579, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30663834

RESUMO

NEW FINDINGS: What is the central question of this study? We have evaluated changes in cardiovascular physiology using echocardiography in an experimental model of lung fibrosis. What is the main finding and its importance? Remarkably, we report changes in cardiovascular function as early as day 7, concomitant with evidence of vascular remodelling. We also report that isolated pulmonary arteries were hypercontractile in response to a thromboxane A2 agonist. These findings are significant because the development of pulmonary hypertension is one of the most significant predictors of mortality in patients with lung fibrosis, where there are no available therapies and a lack of animal models. ABSTRACT: Group III pulmonary hypertension is observed in patients with chronic lung diseases such as chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Pulmonary hypertension (PH) develops as a result of extensive pulmonary vascular remodelling and resultant changes in vascular tone that can lead to right ventricle hypertrophy. This eventually leads to right heart failure, which is the leading indicator of mortality in patients with idiopathic pulmonary fibrosis. Treatments for group III PH are not available, in part owing to a lack of viable animal models. Here, we have evaluated the cardiovascular changes in a model of lung fibrosis and PH. Data obtained from this study indicated that structural alterations in the right heart, such as right ventricular wall hypertrophy, occurred as early as day 14, and similar increases in right ventricle chamber size were seen between days 21 and 28. These structural changes were correlated with decreases in the systolic function of the right ventricle and right ventricular cardiac output, which also occurred between the same time points. Characterization of pulmonary artery dynamics also highlighted that PH might be occurring as early as day 21, indicated by reductions in the velocity-time integral; however, evidence for PH is apparent as early as day 7, indicated by the significant reduction in pulmonary acceleration time values. These changes are consistent with evidence of vascular remodelling observed histologically starting on day 7. In addition, we report hyperactivity of bleomycin-exposed pulmonary arteries to a thromboxane A2 receptor (Tbxa2r) agonist.


Assuntos
Ventrículos do Coração/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Artéria Pulmonar/fisiopatologia , Fibrose Pulmonar/fisiopatologia , Função Ventricular Direita/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Ecocardiografia/métodos , Insuficiência Cardíaca/fisiopatologia , Ventrículos do Coração/efeitos dos fármacos , Hipertensão Pulmonar/induzido quimicamente , Hipertrofia Ventricular Direita/induzido quimicamente , Hipertrofia Ventricular Direita/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Artéria Pulmonar/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Fibrose Pulmonar/induzido quimicamente , Remodelação Vascular/efeitos dos fármacos , Remodelação Vascular/fisiologia , Disfunção Ventricular Direita/fisiopatologia , Função Ventricular Direita/efeitos dos fármacos , Remodelação Ventricular/fisiologia
5.
Circ Res ; 120(1): 110-119, 2017 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-27729468

RESUMO

RATIONALE: Junctional membrane complexes (JMCs) in myocytes are critical microdomains, in which excitation-contraction coupling occurs. Structural and functional disruption of JMCs underlies contractile dysfunction in failing hearts. However, the role of newly identified JMC protein SPEG (striated muscle preferentially expressed protein kinase) remains unclear. OBJECTIVE: To determine the role of SPEG in healthy and failing adult hearts. METHODS AND RESULTS: Proteomic analysis of immunoprecipitated JMC proteins ryanodine receptor type 2 and junctophilin-2 (JPH2) followed by mass spectrometry identified the serine-threonine kinase SPEG as the only novel binding partner for both proteins. Real-time polymerase chain reaction revealed the downregulation of SPEG mRNA levels in failing human hearts. A novel cardiac myocyte-specific Speg conditional knockout (MCM-Spegfl/fl) model revealed that adult-onset SPEG deficiency results in heart failure (HF). Calcium (Ca2+) and transverse-tubule imaging of ventricular myocytes from MCM-Spegfl/fl mice post HF revealed both increased sarcoplasmic reticulum Ca2+ spark frequency and disrupted JMC integrity. Additional studies revealed that transverse-tubule disruption precedes the development of HF development in MCM-Spegfl/fl mice. Although total JPH2 levels were unaltered, JPH2 phosphorylation levels were found to be reduced in MCM-Spegfl/fl mice, suggesting that loss of SPEG phosphorylation of JPH2 led to transverse-tubule disruption, a precursor of HF development in SPEG-deficient mice. CONCLUSIONS: The novel JMC protein SPEG is downregulated in human failing hearts. Acute loss of SPEG in mouse hearts causes JPH2 dephosphorylation and transverse-tubule loss associated with downstream Ca2+ mishandling leading to HF. Our study suggests that SPEG could be a novel target for the treatment of HF.


Assuntos
Insuficiência Cardíaca/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Musculares/biossíntese , Proteínas Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Quinase de Cadeia Leve de Miosina/biossíntese , Proteômica/métodos , Adulto , Idoso , Animais , Feminino , Células HEK293 , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Musculares/genética , Quinase de Cadeia Leve de Miosina/genética
6.
Magn Reson Med ; 71(1): 333-8, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23413044

RESUMO

PURPOSE: The purpose of this study was to determine if magnetization transfer contrast (MTC) imaging could be used to detect early macromolecular accumulation in a mouse model of early Alzheimer's disease. METHODS: We obtained MTC images at 9.4 T at three different age points in the Tg2576 mouse model of Alzheimer's disease. The Tg2576 mouse exhibits increased amyloid beta deposition that eventually progresses into amyloid beta plaque formation, increased hyper-phosphorylated tau but does not exhibit neurodegeneration. RESULTS: Our results show an increase in the MTC signal that predates plaque formation and reported learning and memory deficits in the Tg2576 mouse. This increase in the MTC signal was reversed in a model of antioxidant therapy. CONCLUSION: MTC magnetic resonance imaging can be used to detect early macromolecular changes in the Tg2576 mouse model of Alzheimer's disease. The source of the MTC contrast is likely complex and warrants further investigation in additional preclinical models that represent early and late stage Alzheimer's disease pathologies.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Encéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Patologia Molecular/métodos , Proteínas tau/metabolismo , Animais , Encéfalo/patologia , Meios de Contraste , Camundongos , Camundongos Transgênicos , Distribuição Tecidual
7.
Circ Arrhythm Electrophysiol ; 16(2): e010858, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36706317

RESUMO

BACKGROUND: Spontaneously depolarizing nodal cells comprise the pacemaker of the heart. Intracellular calcium (Ca2+) plays a critical role in mediating nodal cell automaticity and understanding this so-called Ca2+ clock is critical to understanding nodal arrhythmias. We previously demonstrated a role for Jph2 (junctophilin 2) in regulating Ca2+-signaling through inhibition of RyR2 (ryanodine receptor 2) Ca2+ leak in cardiac myocytes; however, its role in pacemaker function and nodal arrhythmias remains unknown. We sought to determine whether nodal Jph2 expression silencing causes increased sinoatrial and atrioventricular nodal cell automaticity due to aberrant RyR2 Ca2+ leak. METHODS: A tamoxifen-inducible, nodal tissue-specific, knockdown mouse of Jph2 was achieved using a Cre-recombinase-triggered short RNA hairpin directed against Jph2 (Hcn4:shJph2). In vivo cardiac rhythm was monitored by surface ECG, implantable cardiac telemetry, and intracardiac electrophysiology studies. Intracellular Ca2+ imaging was performed using confocal-based line scans of isolated nodal cells loaded with fluorescent Ca2+ reporter Cal-520. Whole cell patch clamp was conducted on isolated nodal cells to determine action potential kinetics and sodium-calcium exchanger function. RESULTS: Hcn4:shJph2 mice demonstrated a 40% reduction in nodal Jph2 expression, resting sinus tachycardia, and impaired heart rate response to pharmacologic stress. In vivo intracardiac electrophysiology studies and ex vivo optical mapping demonstrated accelerated junctional rhythm originating from the atrioventricular node. Hcn4:shJph2 nodal cells demonstrated increased and irregular Ca2+ transient generation with increased Ca2+ spark frequency and Ca2+ leak from the sarcoplasmic reticulum. This was associated with increased nodal cell AP firing rate, faster diastolic repolarization rate, and reduced sodium-calcium exchanger activity during repolarized states compared to control. Phenome-wide association studies of the JPH2 locus identified an association with sinoatrial nodal disease and atrioventricular nodal block. CONCLUSIONS: Nodal-specific Jph2 knockdown causes increased nodal automaticity through increased Ca2+ leak from intracellular stores. Dysregulated intracellular Ca2+ underlies nodal arrhythmogenesis in this mouse model.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Cálcio/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Miócitos Cardíacos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Nó Sinoatrial , Trocador de Sódio e Cálcio/metabolismo
8.
Cardiovasc Res ; 118(13): 2805-2818, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34648001

RESUMO

AIMS: Abnormal intracellular calcium (Ca2+) handling contributes to the progressive nature of atrial fibrillation (AF), the most common sustained cardiac arrhythmia. Evidence in mouse models suggests that activation of the nuclear factor of activated T-cell (NFAT) signalling pathway contributes to atrial remodelling. Our aim was to determine the role of NFATc2 in AF in humans and mouse models. METHODS AND RESULTS: Expression levels of NFATc1-c4 isoforms were assessed by quantitative reverse transcription-polymerase chain reaction in right atrial appendages from patients with chronic AF (cAF). NFATc1 and NFATc2 mRNA levels were elevated in cAF patients compared with those in normal sinus rhythm (NSR). Western blotting revealed increased cytosolic and nuclear levels of NFATc2 in AF patients. Similar findings were obtained in CREM-IbΔC-X transgenic (CREM) mice, a model of progressive AF. Telemetry ECG recordings revealed age-dependent spontaneous AF in CREM mice, which was prevented by NFATc2 knockout in CREM:NFATc2-/- mice. Programmed electrical stimulation revealed that CREM:NFATc2-/- mice lacked an AF substrate. Morphometric analysis and histology revealed increased atrial weight and atrial fibrosis in CREM mice compared with wild-type controls, which was reversed in CREM:NFATc2-/- mice. Confocal microscopy showed an increased Ca2+ spark frequency despite a reduced sarcoplasmic reticulum (SR) Ca2+ load in CREM mice compared with controls, whereas these abnormalities were normalized in CREM:NFATc2-/- mice. Western blotting revealed that genetic inhibition of Ca2+/calmodulin-dependent protein kinase II-mediated phosphorylation of S2814 on ryanodine receptor type 2 (RyR2) in CREM:RyR2-S2814A mice suppressed NFATc2 activation observed in CREM mice, suggesting that NFATc2 is activated by excessive SR Ca2+ leak via RyR2. Finally, chromatin immunoprecipitation sequencing from AF patients identified Ras and EF-hand domain-containing protein (Rasef) as a direct target of NFATc2-mediated transcription. CONCLUSION: Our findings reveal activation of the NFAT signalling pathway in patients of Chinese and European descent. NFATc2 knockout prevents the progression of AF in the CREM mouse model.


Assuntos
Fibrilação Atrial , Fatores de Transcrição NFATC , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Camundongos , Fibrilação Atrial/genética , Fibrilação Atrial/prevenção & controle , Fibrilação Atrial/patologia , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/genética , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Miócitos Cardíacos/metabolismo , RNA Mensageiro/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo
9.
Radiat Environ Biophys ; 49(3): 437-45, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20582595

RESUMO

In this study, the ability of the C(60) fullerene derivative DF-1 to protect radiosensitive cells from the effects of high doses of gamma irradiation was examined. Earlier reports of DF-1's lack of toxicity in these cells were confirmed, and DF-1 was also observed to protect both human lymphocytes and rat intestinal crypt cells against radiation-induced cell death. We determined that DF-1 protected both cell types against radiation-induced DNA damage, as measured by inhibition of micronucleus formation. DF-1 also reduced the levels of reactive oxygen species in the crypt cells, a unique capability of fullerenes because of their enhanced reactivity toward electron-rich species. The ability of DF-1 to protect against the cytotoxic effects of radiation was comparable to that of amifostine, another ROS-scavenging radioprotector. Interestingly, localization of fluorescently labeled DF-1 in fibroblast was observed throughout the cell. Taken together, these results suggest that DF-1 provides powerful protection against several deleterious cellular consequences of irradiation in mammalian systems including oxidative stress, DNA damage, and cell death.


Assuntos
Dendrímeros/química , Dendrímeros/farmacologia , Fulerenos/química , Fulerenos/farmacologia , Tolerância a Radiação , Protetores contra Radiação/química , Protetores contra Radiação/farmacologia , Adulto , Animais , Antioxidantes/metabolismo , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Análise Citogenética , Dano ao DNA , Dendrímeros/metabolismo , Fulerenos/metabolismo , Raios gama , Humanos , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos da radiação , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Linfócitos/efeitos da radiação , Protetores contra Radiação/metabolismo , Ratos
10.
Heart Rhythm ; 17(3): 503-511, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31622781

RESUMO

BACKGROUND: Atrial fibrillation (AF) is the most common type of arrhythmia. Abnormal atrial myocyte Ca2+ handling promotes aberrant membrane excitability and remodeling that are important for atrial arrhythmogenesis. The sequence of molecular events leading to loss of normal atrial myocyte Ca2+ homeostasis is not established. Late Na+ current (INa,L) is increased in atrial myocytes from AF patients together with an increase in activity of Ca2+/calmodulin-dependent kinase II (CaMKII). OBJECTIVE: The purpose of this study was to determine whether CaMKII-dependent phosphorylation at Ser571 on NaV1.5 increases atrial INa,L, leading to aberrant atrial Ca2+ cycling, altered electrophysiology, and increased AF risk. METHODS: Atrial myocyte electrophysiology, Ca2+ handling, and arrhythmia susceptibility were studied in wild-type and Scn5a knock-in mice expressing phosphomimetic (S571E) or phosphoresistant (S571A) NaV1.5 at Ser571. RESULTS: Atrial myocytes from S571E but not S571A mice displayed an increase in INa,L and action potential duration, and with adrenergic stress have increased delayed afterdepolarizations. Frequency of Ca2+ sparks and waves was increased in S571E atrial myocytes compared to wild type. S571E mice showed an increase in atrial events induced by adrenergic stress and AF inducibility in vivo. Isolated S571E atria were more susceptible to spontaneous atrial events, which were abrogated by inhibiting sarcoplasmic reticulum Ca2+ release, CaMKII, or the Na+/Ca2+ exchanger. Expression of phospho-NaV1.5 at Ser571 and autophosphorylated CaMKII were increased in atrial samples from human AF patients. CONCLUSION: This study identified CaMKII-dependent regulation of NaV1.5 as an important upstream event in Ca2+ handling defects and abnormal impulse generation in the setting of AF.


Assuntos
Fibrilação Atrial/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Miócitos Cardíacos/metabolismo , Sódio/metabolismo , Animais , Fibrilação Atrial/patologia , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Miócitos Cardíacos/patologia
11.
Physiol Rep ; 7(1): e13950, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632293

RESUMO

We have previously shown Twik-2-/- mice develop pulmonary hypertension and vascular remodeling. We hypothesized that distal pulmonary arteries (D-PAs) of the Twik-2-/- mice are hypercontractile under physiological venous conditions due to altered electrophysiologic properties between the conduit and resistance vessels in the pulmonary vascular bed. We measured resting membrane potential and intracellular calcium through Fura-2 in freshly digested pulmonary artery smooth muscles (PASMCs) from both the right main (RM-PA) and D-PA (distal) regions of pulmonary artery from WT and Twik-2-/- mice. Whole segments of RM-PAs and D-PAs from 20 to 24-week-old wildtype (WT) and Twik-2-/- mice were also pressurized between two glass micropipettes and bathed in buffer with either arterial or venous conditions. Abluminally-applied phenylephrine (PE) and U46619 were added to the buffer at log increments and vessel diameter was measured. All values were expressed as averages with ±SEM. Vasoconstrictor responses did not differ between WT and Twik-2-/- RM-PAs under arterial conditions. Under venous conditions, Twik-2-/- RM-PAs showed an increased sensitivity to PE with a lower EC50 (P = 0.02). Under venous conditions, Twik-2-/- D-PAs showed an increase maximal vasoconstrictor response to both phenylephrine and U46619 compared to the WT mice (P < 0.05). Isolated PASMCs from Twik-2 -/- D-PA were depolarized and had higher intracellular calcium levels compared to PASMCs from RM-PA of both WT and Twik-2-/- mice. These studies suggest that hypercontractile responses and electrophysiologic properties unique to the anatomic location of the D-PAs may contribute to pulmonary hypertensive vasculopathy.


Assuntos
Miócitos de Músculo Liso/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Artéria Pulmonar/metabolismo , Vasoconstrição , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Potenciais de Ação , Animais , Cálcio/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Fenilefrina/farmacologia , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Artéria Pulmonar/citologia , Artéria Pulmonar/fisiologia , Vasoconstritores/farmacologia
12.
Front Med (Lausanne) ; 4: 177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109948

RESUMO

INTRODUCTION: Pulmonary hypertension (PH) carries significant associated morbidity and mortality and the underlying molecular mechanisms of PH are not well understood. Loss-of-function mutations in TASK-1 potassium channels are associated with PH in humans. Although TASK-1 has been considered in the development of PH for over a decade, characterization of TASK-1 knockout mice has been limited to in vitro studies or in vivo studies in room air at isolated time points. The purpose of this study was twofold. First, we sought to determine if TASK-/- male and female mice developed PH over the span of one year. Second, we sought to determine the effect of chronic hypoxia, a stimulus for PH, and its recovery on PH in TASK-1-/- mice. METHODS: We measured right ventricular systolic pressure (RVSP) and vascular remodeling in male and female C57BL/6 WT and TASK-1-/- mice at separate time points: 20-24 weeks and 1 year of age. Additionally, we measured RVSP and vascular remodeling in TASK-1-/- and wild-type mice between 13 and 16 weeks of age exposed to 10% hypoxia for 3 weeks followed by recovery to room air conditions for an additional 6 weeks. RESULTS: RVSP was similar between WT and TASK-/- mice. Male and female WT and TASK-1-/- mice all demonstrated age-related increases in RVSP, which correlated to age-related vascular remodeling in male mice but not in female mice. Male TASK-1-/- and WT mice exposed to chronic hypoxia demonstrated increased RVSP, which decreased following room air recovery. WT and TASK-1-/- male mice demonstrated vascular remodeling upon exposure to hypoxia that persisted in room air recovery. CONCLUSION: Female and male TASK-1-/- mice do not develop hemodynamic or vascular evidence for PH, but RVSP rises in an age-dependent manner independent of genotype. TASK-1-/- and WT male mice develop hypoxia-induced elevations in RVSP that decrease to baseline after recovery in room air. TASK-1-/- and WT male mice demonstrate vascular remodeling after exposure to hypoxia that persists despite recovery to room air conditions and does not correlate with RVSP normalization.

13.
Int J Cardiol ; 227: 668-673, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27838126

RESUMO

RATIONALE: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a potentially lethal arrhythmic disorder caused by mutations in the type-2 ryanodine receptor (RyR2). Mutant RyR2 cause abnormal Ca2+ leak from the sarcoplasmic reticulum (SR), which is associated with the development of arrhythmias. OBJECTIVE: To determine whether derivatives of tetracaine, a local anesthetic drug with known RyR2 inhibiting action, could prevent CPVT induction by suppression of RyR2-mediated SR Ca2+ leak. METHODS AND RESULTS: Confocal microscopy was used to assess the effects of tetracaine and 9 derivatives (EL1-EL9) on spontaneous Ca2+ sparks in ventricular myocytes isolated from RyR2-R176Q/+ mice with CPVT. Whereas each derivative suppressed the Ca2+ spark frequency, derivative EL9 was most effective at the screening dose of 500nmol/L. At this high dose, the Ca2+ transient amplitude was not affected in myocytes from WT or R176Q/+ mice. The IC50 of EL9 was determined to be 13nmol/L, which is about 400× time lower than known RyR2 stabilizer K201. EL9 prevented the induction of ventricular tachycardia observed in placebo-treated R176Q/+ mice, without affecting heart rate or cardiac contractility. CONCLUSIONS: Tetracaine derivatives represent a novel class of RyR2 stabilizing drugs that could be used for the treatment of the potentially fatal disorder catecholaminergic polymorphic ventricular tachycardia.


Assuntos
Antiarrítmicos/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Taquicardia Ventricular/tratamento farmacológico , Taquicardia Ventricular/genética , Tetracaína/análogos & derivados , Tetracaína/uso terapêutico , Anestésicos Locais/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Camundongos , Camundongos Transgênicos , Mutação/genética , Tiazepinas/farmacologia , Tiazepinas/uso terapêutico , Resultado do Tratamento
14.
JACC Basic Transl Sci ; 2(1): 56-67, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28393127

RESUMO

BACKGROUND: Hypertrophic cardiomyopathy (HCM), defined as asymmetric left ventricular hypertrophy, is a leading cause of cardiac death in the young. Perturbations in calcium (Ca2+) handling proteins have been implicated in the pathogenesis of HCM. JPH2-encoded junctophilin 2 is a major component of the junctional membrane complex, the subcellular microdomain involved in excitation-contraction coupling. We hypothesized that a novel JPH2 mutation identified in patients with HCM is causally linked to HCM, and alters intracellular Ca2+ signaling in a pro-hypertrophic manner. OBJECTIVES: To determine using a transgenic mouse model whether a JPH2 mutation found in a HCM patient is responsible for disease development. METHODS: Genetic interrogation of a large cohort of HCM cases was conducted for all coding exons of JPH2. Pseudo-knock-in (PKI) mice containing a novel JPH2 variant were subjected to echocardiography, cardiac MRI, hemodynamic analysis, and histology. RESULTS: A novel JPH2 mutation, A405S, was identified in a genotype-negative proband with significant basal septal hypertrophy. Although initially underappreciated by traditional echocardiographic imaging, PKI mice with this JPH2 mutation (residue A399S in mice) were found to exhibit similar basal hypertrophy using a newly developed echo imaging plane, and this was confirmed using cardiac MRI. Histological analysis demonstrated cardiomyocyte hypertrophy and disarray consistent with HCM. CONCLUSIONS: Variant A405S is a novel HCM-associated mutation in JPH2 found in a proband negative for mutations in the canonical HCM-associated genes. Studies in the analogous mouse model demonstrated for the first time a causal link between a JPH2 defect and HCM. Moreover, novel imaging approaches identified subvalvular septal hypertrophy, specific findings also reported in the human JPH2 mutation carrier.

15.
Int J Cardiol ; 225: 371-380, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27760414

RESUMO

BACKGROUND: Junctophilin-2 (JPH2) is the primary structural protein for the coupling of transverse (T)-tubule associated cardiac L-type Ca channels and type-2 ryanodine receptors on the sarcoplasmic reticulum within junctional membrane complexes (JMCs) in cardiomyocytes. Effective signaling between these channels ensures adequate Ca-induced Ca release required for normal cardiac contractility. Disruption of JMC subcellular domains, a common feature of failing hearts, has been attributed to JPH2 downregulation. Here, we tested the hypothesis that adeno-associated virus type 9 (AAV9) mediated overexpression of JPH2 could halt the development of heart failure in a mouse model of transverse aortic constriction (TAC). METHODS AND RESULTS: Following TAC, a progressive decrease in ejection fraction was paralleled by a progressive decrease of cardiac JPH2 levels. AAV9-mediated expression of JPH2 rescued cardiac contractility in mice subjected to TAC. AAV9-JPH2 also preserved T-tubule structure. Moreover, the Ca2+ spark frequency was reduced and the Ca2+ transient amplitude was increased in AAV9-JPH2 mice following TAC, consistent with JPH2-mediated normalization of SR Ca2+ handling. CONCLUSIONS: This study demonstrates that AAV9-mediated JPH2 gene therapy maintained cardiac function in mice with early stage heart failure. Moreover, restoration of JPH2 levels prevented loss of T-tubules and suppressed abnormal SR Ca2+ leak associated with contractile failure following TAC. These findings suggest that targeting JPH2 might be an attractive therapeutic approach for treating pathological cardiac remodeling during heart failure.


Assuntos
Sinalização do Cálcio/fisiologia , Terapia Genética/métodos , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/terapia , Proteínas de Membrana/biossíntese , Proteínas Musculares/biossíntese , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Adenoviridae/genética , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Insuficiência Cardíaca/diagnóstico por imagem , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo
16.
Hypertension ; 64(6): 1260-5, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25245387

RESUMO

TWIK-2 (KCNK6) is a member of the 2-pore domain (K2P) family of potassium channels, which are highly expressed in the vascular system. We tested the hypothesis that TWIK-2 deficiency leads to pulmonary hypertension. TWIK-2 knockout mice and their wildtype littermates at 8 weeks of age had similar mean right ventricular systolic pressures (24±3 and 21±3 mm Hg, respectively.) Significantly, by 20 weeks of age, the mean right ventricular systolic pressures in TWIK-2 knockout mice increased to 35±3 mm Hg (P≤0.036), whereas mean right ventricular systolic pressures in wildtype littermates remained at 22±3 mm Hg. Elevated mean right ventricular systolic pressures in the TWIK-2 knockout mice was accompanied by pulmonary vascular remodeling as determined by a 25% increase in the cross-sectional area of the vessels occupied by the vessel wall. Additionally, secondary branches of the pulmonary artery from 20-week-old TWIK-2 knockout mice showed an enhanced contractile response to U46619 (10(-6) moles/L), a thromboxane A2 mimetic, which was completely abolished with the Rho-kinase inhibitor, Y27632 (10(-6) and 10(-5) moles/L). Treatment of TWIK-2 knockout mice with the Rho-kinase inhibitor, fasudil, in the drinking water for 12 weeks, abolished the development of pulmonary hypertension and attenuated the vessel remodeling. We concluded that mice deficient in the TWIK-2 channel develop pulmonary hypertension between 8 and 20 weeks of age through a mechanism involving Rho-kinase. Our results suggest that downregulation of TWIK-2 in the pulmonary vasculature may be an underlying mechanism in the development of pulmonary hypertension.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Hipertensão Pulmonar/genética , Canais de Potássio de Domínios Poros em Tandem/deficiência , Artéria Pulmonar/metabolismo , Quinases Associadas a rho/genética , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Genótipo , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Canais de Potássio de Domínios Poros em Tandem/genética , Artéria Pulmonar/fisiopatologia , Função Ventricular Direita , Quinases Associadas a rho/biossíntese
17.
Int J Cardiol ; 176(3): 994-1000, 2014 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-25227892

RESUMO

BACKGROUND: Long-term exposure to microgravity during space flight may lead to cardiac remodeling and rhythm disturbances. In mice, hindlimb unloading (HU) mimics the effects of microgravity and stimulates physiological adaptations, including cardiovascular deconditioning. Recent studies have demonstrated an important role played by changes in intracellular Ca handling in the pathogenesis of heart failure and arrhythmia. In this study, we tested the hypothesis that cardiac remodeling following HU in mice involves abnormal intracellular Ca regulation through the cardiac ryanodine receptor (RyR2). METHODS AND RESULTS: Mice were subjected to HU by tail suspension for 28 to 56 days in order to induce cardiac remodeling (n=15). Control mice (n=19) were treated equally, with the exception of tail suspension. Echocardiography revealed cardiac enlargement and depressed contractility starting at 28 days post-HU versus control. Moreover, mice were more susceptible to pacing-induced ventricular arrhythmias after HU. Ventricular myocytes isolated from HU mice exhibited an increased frequency of spontaneous sarcoplasmic reticulum (SR) Ca release events and enhanced SR Ca leak via RyR2. Western blotting revealed increased RyR2 phosphorylation at S2814, and increased CaMKII auto-phosphorylation at T287, suggesting that CaMKII activation of RyR2 might underlie enhanced SR Ca release in HU mice. CONCLUSION: These data suggest that abnormal intracellular Ca handling, likely due to increased CaMKII phosphorylation of RyR2, plays a role in cardiac remodeling following simulated microgravity in mice.


Assuntos
Arritmias Cardíacas/etiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Simulação de Ausência de Peso/efeitos adversos , Animais , Arritmias Cardíacas/metabolismo , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Modelos Animais de Doenças , Elevação dos Membros Posteriores , Camundongos , Fosforilação/fisiologia , Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Remodelação Ventricular/fisiologia
18.
Cardiovasc Res ; 103(1): 178-87, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24812280

RESUMO

AIMS: Altered Ca(2+) handling in atrial fibrillation (AF) has been associated with dysregulated protein phosphatase 1 (PP1) and subcellular heterogeneities in protein phosphorylation, but the underlying mechanisms remain unclear. This is due to a lack of investigation into the local, rather than global, regulation of PP1 on different subcellular targets such as ryanodine receptor type 2 (RyR2), especially in AF. METHODS AND RESULTS: We tested the hypothesis that impaired local regulation of PP1 causes RyR2 hyperphosphorylation thereby promoting AF susceptibility. To specifically disrupt PP1's local regulation of RyR2, we used the spinophilin knockout (Sp(-/-)) mice (Mus musculus) since PP1 is targeted to RyR2 via spinophilin. Without spinophilin, the interaction between PP1 and RyR2 was reduced by 64%, while RyR2 phosphorylation was increased by 43% at serine (S)2814 but unchanged at S2808. Lipid bilayer experiments revealed that single RyR2 channels isolated from Sp(-/-) hearts had an increased open probability. Likewise, Ca(2+) spark frequency normalized to sarcoplasmic reticulum Ca(2+) content was also enhanced in Sp(-/-) atrial myocytes, but normalized by Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitors KN-93 and AIP and also by genetic inhibition of RyR2 S2814 phosphorylation. Finally, Sp(-/-) mice exhibited increased atrial ectopy and susceptibility to pacing-induced AF, both of which were also prevented by the RyR2 S2814A mutation. CONCLUSION: PP1 regulates RyR2 locally by counteracting CaMKII phosphorylation of RyR2. Decreased local PP1 regulation of RyR2 contributes to RyR2 hyperactivity and promotes AF susceptibility. This represents a novel mechanism for subcellular modulation of calcium channels and may represent a potential drug target of AF.


Assuntos
Fibrilação Atrial/etiologia , Fibrilação Atrial/metabolismo , Proteína Fosfatase 1/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Substituição de Aminoácidos , Animais , Fibrilação Atrial/genética , Sinalização do Cálcio , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Proteínas dos Microfilamentos/deficiência , Proteínas dos Microfilamentos/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Miocárdio/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/metabolismo
19.
Cardiovasc Res ; 100(1): 44-53, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23715556

RESUMO

AIMS: Transverse tubules (TTs) provide the basic subcellular structures that facilitate excitation-contraction (EC) coupling, the essential process that underlies normal cardiac contractility. Previous studies have shown that TTs develop within the first few weeks of life in mammals but the molecular determinants of this development have remained elusive. This study aims to elucidate the role of junctophilin-2 (JPH2), a junctional membrane complex protein, in the maturation of TTs in cardiomyocytes. METHODS AND RESULTS: Using a novel cardiac-specific short-hairpin-RNA-mediated JPH2 knockdown mouse model (Mus musculus; αMHC-shJPH2), we assessed the effects of the loss of JPH2 on the maturation of the ventricular TT structure. Between embryonic day (E) 10.5 and postnatal day (P) 10, JPH2 mRNA and protein levels were reduced by >70% in αMHC-shJPH2 mice. At P8 and P10, knockdown of JPH2 significantly inhibited the maturation of TTs, while expression levels of other genes implicated in TT development remained mostly unchanged. At the same time, intracellular Ca(2+) handling was disrupted in ventricular myocytes from αMHC- shJPH2 mice, which developed heart failure by P10 marked by reduced ejection fraction, ventricular dilation, and premature death. In contrast, JPH2 transgenic mice exhibited accelerated TT maturation by P8. CONCLUSION: Our findings suggest that JPH2 is necessary for TT maturation during postnatal cardiac development in mice. In particular, JPH2 may be critical in anchoring the invaginating sarcolemma to the sarcoplasmic reticulum, thereby enabling the maturation of the TT network.


Assuntos
Coração/embriologia , Proteínas de Membrana/fisiologia , Miócitos Cardíacos/citologia , Sarcolema/fisiologia , Animais , Cálcio/metabolismo , Coração/crescimento & desenvolvimento , Insuficiência Cardíaca/etiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA