Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34891155

RESUMO

The extraction of predictive features from the complex high-dimensional multi-omic data is necessary for decoding and overcoming the therapeutic responses in systems pharmacology. Developing computational methods to reduce high-dimensional space of features in in vitro, in vivo and clinical data is essential to discover the evolution and mechanisms of the drug responses and drug resistance. In this paper, we have utilized the matrix factorization (MF) as a modality for high dimensionality reduction in systems pharmacology. In this respect, we have proposed three novel feature selection methods using the mathematical conception of a basis for features. We have applied these techniques as well as three other MF methods to analyze eight different gene expression datasets to investigate and compare their performance for feature selection. Our results show that these methods are capable of reducing the feature spaces and find predictive features in terms of phenotype determination. The three proposed techniques outperform the other methods used and can extract a 2-gene signature predictive of a tyrosine kinase inhibitor treatment response in the Cancer Cell Line Encyclopedia.


Assuntos
Algoritmos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Farmacologia em Rede
2.
Comput Biol Med ; 146: 105426, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35569336

RESUMO

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients' characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.


Assuntos
COVID-19 , Biomarcadores , Humanos , Aprendizado de Máquina , Pandemias , Triagem/métodos
3.
medRxiv ; 2021 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-34268522

RESUMO

One of the most critical challenges in managing complex diseases like COVID-19 is to establish an intelligent triage system that can optimize the clinical decision-making at the time of a global pandemic. The clinical presentation and patients’ characteristics are usually utilized to identify those patients who need more critical care. However, the clinical evidence shows an unmet need to determine more accurate and optimal clinical biomarkers to triage patients under a condition like the COVID-19 crisis. Here we have presented a machine learning approach to find a group of clinical indicators from the blood tests of a set of COVID-19 patients that are predictive of poor prognosis and morbidity. Our approach consists of two interconnected schemes: Feature Selection and Prognosis Classification. The former is based on different Matrix Factorization (MF)-based methods, and the latter is performed using Random Forest algorithm. Our model reveals that Arterial Blood Gas (ABG) O 2 Saturation and C-Reactive Protein (CRP) are the most important clinical biomarkers determining the poor prognosis in these patients. Our approach paves the path of building quantitative and optimized clinical management systems for COVID-19 and similar diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA