Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38791285

RESUMO

Extracellular vesicles (EVs) have been found to have the characteristics of their parent cells. Based on the characteristics of these EVs, various studies on disease treatment using mesenchymal stem cell (MSC)-derived EVs with regenerative activity have been actively conducted. The therapeutic nature of MSC-derived EVs has been shown in several studies, but in recent years, there have been many efforts to functionalize EVs to give them more potent therapeutic effects. Strategies for functionalizing EVs include endogenous and exogenous methods. In this study, human umbilical cord MSC (UCMSC)-derived EVs were selected for optimum OA treatments with expectation via bioinformatics analysis based on antibody array. And we created a novel nanovesicle system called the IGF-si-EV, which has the properties of both cartilage regeneration and long-term retention in the lesion site, attaching positively charged insulin-like growth factor-1 (IGF-1) to the surface of the UCMSC-derived Evs carrying siRNA, which inhibits MMP13. The downregulation of inflammation-related cytokine (MMP13, NF-kB, and IL-6) and the upregulation of cartilage-regeneration-related factors (Col2, Acan) were achieved with IGF-si-EV. Moreover, the ability of IGF-si-EV to remain in the lesion site for a long time has been proven through an ex vivo system. Collectively, the final constructed IGF-si-EV can be proposed as an effective OA treatment through its successful MMP13 inhibition, chondroprotective effect, and cartilage adhesion ability. We also believe that this EV-based nanoparticle-manufacturing technology can be applied as a platform technology for various diseases.


Assuntos
Vesículas Extracelulares , Fator de Crescimento Insulin-Like I , Células-Tronco Mesenquimais , Osteoartrite , RNA Interferente Pequeno , Fator de Crescimento Insulin-Like I/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoartrite/terapia , Osteoartrite/metabolismo , RNA Interferente Pequeno/genética , Animais , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética
2.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499413

RESUMO

Extracellular vesicles (EVs) derived from human mesenchymal stem cells (hMSCs) have been widely known to have therapeutic effects by representing characteristics of the origin cells as an alternative for cell-based therapeutics. Major limitations of EVs for clinical applications include low production yields, unknown effects from serum impurities, and relatively low bioactivities against dose. In this study, we proposed a cell modulation method with melatonin for human umbilical cord MSCs (hUCMSCs) cultured in serum-free chemically defined media (CDM) to eliminate the effects of serum-derived impurities and promote regeneration-related activities. miRNAs highly associated with regeneration were selected and the expression levels of them were comparatively analyzed among various types of EVs depending on culture conditions. The EVs derived from melatonin-stimulated hUCMSCs in CDM (CDM mEVs) showed the highest expression levels of regeneration-related miRNAs, and 7 times more hsa-let-7b-5p, 5.6 times more hsa-miR-23a-3p, and 5.7 times more hsa-miR-100-5p than others, respectively. In addition, the upregulation of various functionalities, such as wound healing, angiogenesis, anti-inflammation, ROS scavenging, and anti-apoptosis, were proven using in vitro assays by simulating the characteristics of EVs with bioinformatics analysis. The present results suggest that the highly regenerative properties of hUCMSC-derived EVs were accomplished with melatonin stimulation in CDM and provided the potential for clinical uses of EVs.


Assuntos
Vesículas Extracelulares , Melatonina , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Células-Tronco Mesenquimais/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Células Cultivadas , Vesículas Extracelulares/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cordão Umbilical/metabolismo , Meios de Cultura Livres de Soro
3.
Methods ; 177: 2-14, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31874237

RESUMO

Synthetic nanoparticles are extensively utilized in various biomedical engineering fields because of their unique physicochemical properties. However, their exogenous characteristics result in synthetic nanosystem invaders that easily induce the passive immune clearance mechanism, thereby increasing the retention effect caused by reticuloendothelial system (RES), resulting in low therapeutic efficacy and toxic effects. Recently, a cell membrane cloaking has been emerging technique as a novel interfacing approach from the biological/immunological perspective. This has been considered as useful technique for improving the performance of synthetic nanocarriers in vivo. By cell membrane cloaking, nanoparticles acquire the biological functions of natural cell membranes due to the presence of membrane-anchored proteins, antigens, and immunological moieties as well as physicochemical property of natural cell membrane. Due to cell membrane cloaking, the derived biological properties and functions of nanoparticles such as their immunosuppressive capability, long circulation time, and disease targeting ability have enhanced their future potential in biomedicine. Here, we review the cell membrane-cloaked nanosystems, highlight their novelty, introduce the preparation and characterization methods with relevant biomedical applications, and describe the prospects for using this novel biomimetic system that was developed from a combination of cell membranes and synthetic nanomaterials.


Assuntos
Aterosclerose/terapia , Membrana Celular/química , Sistemas de Liberação de Medicamentos/métodos , Isquemia/terapia , Nanopartículas/uso terapêutico , Neoplasias/terapia , Animais , Aterosclerose/metabolismo , Aterosclerose/patologia , Plaquetas/química , Plaquetas/metabolismo , Membrana Celular/metabolismo , Modelos Animais de Doenças , Eritrócitos/química , Eritrócitos/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/patologia , Extração Líquido-Líquido/métodos , Camundongos , Mimetismo Molecular , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Sonicação/métodos , Células-Tronco/química , Células-Tronco/metabolismo , Linfócitos T/química , Linfócitos T/metabolismo
4.
Small ; 13(43)2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28902980

RESUMO

Highly reliable detection, imaging, and monitoring of reactive oxygen species (ROS) are critical for understanding and studying the biological roles and pathogenesis of ROS. This study describes the design and synthesis of myoglobin and polydopamine-engineered surface-enhanced Raman scattering (MP-SERS) nanoprobes with strong, tunable SERS signals that allow for specifically detecting and imaging ROS sensitively and quantitatively. The study shows that a polydopamine nanolayer can facilitate the modification of Raman-active myoglobins and satellite Au nanoparticles (s-AuNPs) to a plasmonic core AuNP (c-AuNP) in a controllable manner and the generation of plasmonically coupled hot spots between a c-AuNP and s-AuNPs that can induce strong SERS signals. The six-coordinated Fe(III)-OH2 of myoglobins in plasmonic hotspots is reacted with ROS (H2 O2 , •OH, and O2- ) to form Fe(IV)O. The characteristic Raman peaks of Fe(IV)O from the Fe-porphyrin is used to analyze and quantify ROS. This chemistry allows for these probes to detect ROS in solution and image ROS in cells in a highly designable, specific, and sensitive manner. This work shows that these MP-SERS probes allow for detecting and imaging ROS to differentiate cancerous cells from noncancerous cells. Importantly, for the first time, SERS-based monitoring of the autophagy process in living cells under starvation conditions is validated.


Assuntos
Indóis/química , Nanopartículas Metálicas/química , Mioglobina/metabolismo , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo , Análise Espectral Raman , Autofagia , Sobrevivência Celular , Ouro/química , Células HeLa , Humanos , Lisossomos/metabolismo , Nanopartículas Metálicas/ultraestrutura
5.
Small ; 12(34): 4726-34, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27028989

RESUMO

Plasmonic nanostructures are widely studied and used because of their useful size, shape, composition and assembled structure-based plasmonic properties. It is, however, highly challenging to precisely design, reproducibly synthesize and reliably utilize plasmonic nanostructures with enhanced optical properties. Here, we devise a facile synthetic method to generate Au surface roughness-controlled nanobridged nanogap particles (Au-RNNPs) with ultrasmall (≈1 nm) interior gap and tunable surface roughness in a highly controllable manner. Importantly, we found that particle surface roughness can be associated with and enhance the electromagnetic field inside the interior gap, and stronger nanogap-enhanced Raman scattering (NERS) signals can be generated from particles by increasing particle surface roughness. The finite-element method-based calculation results support and are matched well with the experimental results and suggest one needs to consider particle shape, nanogap and nanobridges simultaneously to understand and control the optical properties of this type of nanostructures. Finally, the potential of multiplexed Raman detection and imaging with RNNPs and the high-speed, high-resolution Raman bio-imaging of Au-RNNPs inside cells with a wide-field Raman imaging setup with liquid crystal tunable filter are demonstrated. Our results provide strategies and principles in designing and synthesizing plasmonically enhanced nanostructures and show potential for detecting and imaging Raman nanoprobes in a highly specific, sensitive and multiplexed manner.


Assuntos
Imageamento Tridimensional , Nanopartículas Metálicas/química , Fenômenos Ópticos , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , DNA/química , Campos Eletromagnéticos , Ouro/química , Humanos , Hidroxilamina/química , Nanopartículas Metálicas/ultraestrutura , Propriedades de Superfície
6.
J Am Chem Soc ; 136(46): 16317-25, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25386786

RESUMO

The precise control of plasmonic nanostructures and their use for less invasive apoptotic pathway-based therapeutics are important but challenging. Here, we introduce a highly controlled synthetic strategy for plasmonic core-petal nanoparticles (CPNs) with massively branched and plasmonically coupled nanostructures. The formation of CPNs was facilitated by the gold chloride-induced oxidative disassembly and rupture of the polydopamine corona around Au nanoparticles and subsequent growth of Au nanopetals. We show that CPNs can act as multifunctional nanoprobes that induce dual photodynamic and photothermal therapeutic effects without a need for organic photosensitizers, coupled with the generation of reactive oxygen species (ROS), and allow for imaging and analyzing cells. Near-infrared laser-activated CPNs can optically monitor and efficiently kill cancer cells via apoptotic pathway by dual phototherapeutic effects and ROS-mediated oxidative intracellular damage with a relatively mild increase in temperature, low laser power, and short laser exposure time.


Assuntos
Ouro/química , Ouro/farmacologia , Nanopartículas Metálicas , Nanomedicina/métodos , Fotoquimioterapia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Ouro/uso terapêutico , Compostos de Ouro/química , Células HeLa , Humanos , Indóis/química , Oxirredução , Polímeros/química , Propriedades de Superfície
7.
Acta Neuropathol Commun ; 12(1): 65, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649962

RESUMO

The progressive and irreversible degeneration of retinal ganglion cells (RGCs) and their axons is the major characteristic of glaucoma, a leading cause of irreversible blindness worldwide. Nicotinamide adenine dinucleotide (NAD) is a cofactor and metabolite of redox reaction critical for neuronal survival. Supplementation with nicotinamide (NAM), a precursor of NAD, can confer neuroprotective effects against glaucomatous damage caused by an age-related decline of NAD or mitochondrial dysfunction, reflecting the high metabolic activity of RGCs. However, oral supplementation of drug is relatively less efficient in terms of transmissibility to RGCs compared to direct delivery methods such as intraocular injection or delivery using subconjunctival depots. Neither method is ideal, given the risks of infection and subconjunctival scarring without novel techniques. By contrast, extracellular vesicles (EVs) have advantages as a drug delivery system with low immunogeneity and tissue interactions. We have evaluated the EV delivery of NAM as an RGC protective agent using a quantitative assessment of dendritic integrity using DiOlistics, which is confirmed to be a more sensitive measure of neuronal health in our mouse glaucoma model than the evaluation of somatic loss via the immunostaining method. NAM or NAM-loaded EVs showed a significant neuroprotective effect in the mouse retinal explant model. Furthermore, NAM-loaded EVs can penetrate the sclera once deployed in the subconjunctival space. These results confirm the feasibility of using subconjunctival injection of EVs to deliver NAM to intraocular targets.


Assuntos
Vesículas Extracelulares , Glaucoma , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Niacinamida , Células Ganglionares da Retina , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efeitos dos fármacos , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/metabolismo , Niacinamida/administração & dosagem , Niacinamida/farmacologia , Camundongos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Glaucoma/metabolismo , Glaucoma/tratamento farmacológico , Neuroproteção/efeitos dos fármacos , Esclera/metabolismo , Esclera/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Masculino
8.
J Adv Res ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38537702

RESUMO

INTRODUCTION: With prevalence of chronic kidney disease (CKD) in worldwide, the strategies to recover renal function via tissue regeneration could provide alternatives to kidney replacement therapies. However, due to relatively low reproducibility of renal basal cells and limited bioactivities of implanted biomaterials along with the high probability of substance-inducible inflammation and immunogenicity, kidney tissue regeneration could be challenging. OBJECTIVES: To exclude various side effects from cell transplantations, in this study, we have induced extracellular vesicles (EVs) incorporated cell-free hybrid PMEZ scaffolds. METHODS: Hybrid PMEZ scaffolds incorporating essential bioactive components, such as ricinoleic acid grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) based on biodegradable porous PLGA (P) platform was successfully manufactured. Consecutively, for functional improvements, melatonin-modulated extracellular vesicles (mEVs), derived from the human umbilical cord MSCs in chemically defined media without serum impurities, were also loaded onto PMEZ scaffolds to construct the multiplexed PMEZ/mEV scaffold. RESULTS: With functionalities of Mg(OH)2 and extracellular matrix-loaded PLGA scaffolds, the continuous nitric oxide-releasing property of modified ZnO and remarkably upregulated regenerative functionalities of mEVs showed significantly enhanced kidney regenerative activities. Based on these, the structural and functional restoration has been practically achieved in 5/6 nephrectomy mouse models that mimicked severe human CKD. CONCLUSION: Our study has proved the combinatory bioactivities of the biodegradable PLGA-based multiplexed scaffold for kidney tissue regeneration in 5/6 nephrectomy mouse representing a severe CKD model. The optimal microenvironments for the morphogenetic formations of renal tissues and functional restorations have successfully achieved the combinatory bioactivities of remarkable components for PMEZ/mEV, which could be a promising therapeutic alternative for CKD treatment.

9.
Biomater Sci ; 11(3): 916-930, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36533852

RESUMO

Drug-eluting balloon (DEB) system has been widely utilized for percutaneous coronary intervention (PCI), treating atherosclerosis to overcome the limitations of cardiovascular stents. With the anti-proliferative drug, everolimus (EVL), nitric oxide (NO) plays a key bioregulator role to facilitate the angiogenesis of endothelial cells (ECs) and inhibit the cell proliferation of smooth muscle cells (SMCs) in the lesions of cardiovascular diseases. Due to the very short lifetime and limited exposure area of NO in the body, the continuous release and efficient delivery of NO must be carefully considered. In this respect, a liposome-containing disulfide bonding group was introduced as a delivery vehicle of EVL and NO with the continuous release of NO via successive reaction cycles with GSH and SNAP in the blood vessel without the need for exogenous stimulations. With a multilayer coating platform consisting of a polyvinylpyrrolidone (PVP)/EVL-laden liposome with NO (EVL-NO-Lipo)/PVP, we precluded the loss of the EVL-encapsulated liposome with NO release during the transition time and maximized the transfer rate from the surface of DEB to the tissues. The sustained release of NO was monitored using a nitric oxide analyzer (NOA), and the synergistic bioactivities of EVL and NO were proved in EC and SMC with angiogenesis and cell proliferation-related assays. From the results of hemocompatibility and ex vivo studies, the feasibility was provided for future in vivo applications of the multilayer-coated DEB system.


Assuntos
Angioplastia Coronária com Balão , Stents Farmacológicos , Intervenção Coronária Percutânea , Óxido Nítrico , Lipossomos , Células Endoteliais , Everolimo/farmacologia
10.
Biomater Res ; 27(1): 130, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082304

RESUMO

Extracellular vesicles (EVs) are nanosized particles that are released from cells and reflect the characteristics of the mother cell. Recently, the EVs have been used in several types of studies across many different fields. In the field of EV research, multiple cell culture and EV isolation techniques have been highlighted in importance. Various strategies, including exclusive component culture media, three-dimensional (3D) cultures, and hypoxic conditions, have been proposed for the cell culture to control function of the EVs. Ultracentrifugation, ultrafiltration, precipitation, and tangential flow filtration (TFF) have been utilized for EV isolation. Although isolated EVs have their own functionalities, several researchers are trying to functionalize EVs by applying various engineering approaches. Gene editing, exogenous, endogenous, and hybridization methods are the four well-known types of EV functionalization strategies. EV engineered through these processes has been applied in the field of regenerative medicine, including kidney diseases, osteoarthritis, rheumatoid arthritis, nervous system-related diseases, and others. In this review, it was focused on engineering approaches for EV functionalization and their applications in regenerative medicine.

11.
Biomater Res ; 27(1): 126, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38049879

RESUMO

BACKGROUND: To overcome the limitations of current alternative therapies for chronic kidney disease (CKD), tissue engineering-mediated regeneration strategies have demonstrated the possibilities for complete kidney tissue regeneration. Given the challenges associated with the reproducibility of renal basal cells, the incorporation of intermediate mesoderm (IM) cells and bioactive materials to control bioactivities of cells with supported scaffolds should be considered as a viable approach to enable the regeneration of the complex kidney structure via renal differentiation. METHODS: We developed PMEZ scaffolds by combining crucial bioactive components, such as ricinoleic acid-grafted Mg(OH)2 (M), extracellular matrix (E), and alpha lipoic acid-conjugated ZnO (Z) integrated into biodegradable porous PLGA (P) platform. Additionally, we utilized differentiating extracellular vesicles (dEV) isolated during intermediate mesoderm differentiation into kidney progenitor cells, and IM cells were serially incorporated to facilitate kidney tissue regeneration through their differentiation into kidney progenitor cells in the 3/4 nephrectomy mouse model. RESULTS: The use of differentiating extracellular vesicles facilitated IM differentiation into kidney progenitor cells without additional differentiation factors. This led to improvements in various regeneration-related bioactivities including tubule and podocyte regeneration, anti-fibrosis, angiogenesis, and anti-inflammation. Finally, implanting PMEZ/dEV/IM scaffolds in mouse injury model resulted in the restoration of kidney function. CONCLUSIONS: Our study has demonstrated that utilizing biodegradable PLGA-based scaffolds, which include multipotent cells capable of differentiating into various kidney progenitor cells along with supporting components, can facilitate kidney tissue regeneration in the mouse model that simulates CKD through 3/4 nephrectomy.

12.
Nano Converg ; 9(1): 57, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36534191

RESUMO

Human mesenchymal stem cells (hMSCs)-derived extracellular vesicles (EVs) have been known to possess the features of the origin cell with nano size and have shown therapeutic potentials for regenerative medicine in recent studies as alternatives for cell-based therapies. However, extremely low production yield, unknown effects derived from serum impurities, and relatively low bioactivities on doses must be overcome for translational applications. As several reports have demonstrated the tunability of secretion and bioactivities of EVs, herein, we introduced three-dimensional (3D) culture and cell priming approaches for MSCs in serum-free chemically defined media to exclude side effects from serum-derived impurities. Aggregates (spheroids) with 3D culture dramatically enhanced secretion of EVs about 6.7 times more than cells with two-dimensional (2D) culture, and altered surface compositions. Further modulation with cell priming with the combination of TNF-α and IFN-γ (TI) facilitated the production of EVs about 1.4 times more than cells without priming (9.4 times more than cells with 2D culture without priming), and bioactivities of EVs related to tissue regenerations. Interestingly, unlike changing 2D to 3D culture, TI priming altered internal cytokines of MSC-derived EVs. Through simulating characteristics of EVs with bioinformatics analysis, the regeneration-relative properties such as angiogenesis, wound healing, anti-inflammation, anti-apoptosis, and anti-fibrosis, for three different types of EVs were comparatively analyzed using cell-based assays. The present study demonstrated that a combinatory strategy, 3D cultures and priming MSCs in chemically defined media, provided the optimum environments to maximize secretion and regeneration-related bioactivities of MSC-derived EVs without impurities for future translational applications.

13.
Small ; 7(14): 2052-60, 2011 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-21688390

RESUMO

Radioactive iodine-labeled, cyclic RGD-PEGylated gold nanoparticle (AuNP) probes are designed and synthesized for targeting cancer cells and imaging tumor sites. These iodine-125-labeled cRGD-PEG-AuNP probes are stable in various conditions including a range of pHs and high salt and temperature conditions. These probes can target selectively and be taken up by tumor cells via integrin αvß3-receptor-mediated endocytosis with no cytotoxicity. The probes show a significant increase in the avidity of αvß3 integrin compared to the corresponding free cRGD peptides. In-vivo SPECT/CT imaging results show that the iodine-125-labeled cRGD-PEG-AuNP probes can target the tumor site as soon as 10 min after injection, and also that cyclic RGD peptides are needed for efficient and long-term in-vivo monitoring. The results suggest that the probes circulate through the whole body, including renal filtration, and are excretable. These promising results show that radioactive-iodine-labeled gold nanoprobes have potential for highly specific and sensitive tumor imaging or for use as angiogenesis-targeted SPECT/CT imaging probes.


Assuntos
Diagnóstico por Imagem/métodos , Ouro/química , Nanopartículas Metálicas/química , Sondas Moleculares/química , Neoplasias/patologia , Peptídeos Cíclicos/química , Polietilenoglicóis/química , Animais , Linhagem Celular Tumoral , Humanos , Integrina alfaVbeta3/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Radioisótopos do Iodo , Nanopartículas Metálicas/ultraestrutura , Camundongos , Camundongos Nus , Peptídeos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Tissue Eng Regen Med ; 18(3): 355-367, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34047999

RESUMO

BACKGROUND: In order to produce and isolate the exosome derived from the cell of interests, a serum free environment (starvation) has been essential for excluding the unknown effect from serum-derived exosomes. Recently, serum-free culture media have been developed as a substitute for serum supplemented media so that MSC proliferates with maintaining the original characteristics of the cells in a serum free condition. Due to the different properties of the exosomes representing the states and characteristics of the origin cells, a study is needed to compare the properties of the cell-derived exosomes according to the cell culture media. METHODS: To compare the cell culture condition on exosomes, human umbilical cord mesenchymal stem cells (UCMSCs) were cultured with two different media, serum containing media, 10% FBS supplemented DMEM (NM) and serum-free chemically defined media, CellCor™ CD MSC (CDM). To remove FBS-derived exosomes from UCMSC cultured with NM, the medium was replaced with FBS-free DMEM for starvation during exosome isolation. The production yield and expression levels of angiogenic and pro-inflammatory factors were compared. And, the subpopulations of exosome were classified depending on the surface properties and loaded cytokines. Finally, the wound healing and angiogenic effects have been evaluated using in vitro assays. RESULTS: The UCMSC-derived exosomes under two different cell culture media could be classified into subpopulations according to the surface composition and loaded cytokines. Especially, exosome derived from UCMSC cultured with CDM showed higher expression levels of cytokines related to regenerative bioactivities which resulted in enhanced wound healing and angiogenesis. CONCLUSION: CDM has the advantages to maintain cell proliferation even during the period of exosome isolations and eliminate unknown side effects caused by serum-derived exosomes. Additionally, exosomes derived from UCMSC cultured with CDM show better wound healing and angiogenic effects due to a lot of regeneration-related cytokines and less pro-inflammatory cytokines compared to with NM.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Técnicas de Cultura de Células , Meios de Cultura Livres de Soro , Humanos , Cordão Umbilical
15.
Pharmaceutics ; 13(5)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922861

RESUMO

Drug-eluting balloons (DEBs) have been mostly exploited as an interventional remedy for treating atherosclerosis instead of cardiovascular stents. However, the therapeutic efficacy of DEB is limited due to their low drug delivery capability to the disease site. The aim of our study was to load drugs onto a balloon catheter with preventing drug loss during transition time and maximizing drug transfer from the surface of DEBs to the cardiovascular wall. For this, a multilayer-coated balloon catheter, composed of PVP/Drug-loaded liposome/PVP, was suggested. The hydrophilic property of 1st layer, PVP, helps to separate drug layer in hydrophilic blood vessel, and the 2nd layer with Everolimus (EVL)-loaded liposome facilitates drug encapsulation and sustained release to the targeted lesions during inflation time. Additionally, a 3rd layer with PVP can protect the inner layer during transition time for preventing drug loss. The deionized water containing 20% ethanol was utilized to hydrate EVL-loaded liposome for efficient coating processes. The coating materials showed negligible toxicity in the cells and did not induce pro-inflammatory cytokine in human coronary artery smooth muscle cells (HCASMCs), even in case of inflammation induction through LPS. The results of hemocompatibility for coating materials exhibited that protein adsorption and platelet adhesion somewhat decreased with multilayer-coated materials as compared to bare Nylon tubes. The ex vivo experiments to confirm the feasibility of further applications of multilayer-coated strategy as a DEB system demonstrated efficient drug transfer of approximately 65% in the presence of the 1st layer, to the tissue in 60 s after treatment. Taken together, a functional DEB platform with such a multilayer coating approach would be widely utilized for percutaneous coronary intervention (PCI).

16.
J Tissue Eng ; 12: 20417314211008626, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959246

RESUMO

Exosomes derived from mesenchymal stem cells (MSCs) have been studied as vital components of regenerative medicine. Typically, various isolation methods of exosomes from cell culture medium have been developed to increase the isolation yield of exosomes. Moreover, the exosome-depletion process of serum has been considered to result in clinically active and highly purified exosomes from the cell culture medium. Our aim was to compare isolation methods, ultracentrifuge (UC)-based conventional method, and tangential flow filtration (TFF) system-based method for separation with high yield, and the bioactivity of the exosome according to the purity of MSC-derived exosome was determined by the ratio of Fetal bovine serum (FBS)-derived exosome to MSC-derived exosome depending on exosome depletion processes of FBS. The TFF-based isolation yield of exosome derived from human umbilical cord MSC (UCMSC) increased two orders (92.5 times) compared to UC-based isolation method. Moreover, by optimizing the process of depleting FBS-derived exosome, the purity of UCMSC-derived exosome, evaluated using the expression level of MSC exosome surface marker (CD73), was about 15.6 times enhanced and the concentration of low-density lipoprotein-cholesterol (LDL-c), known as impurities resulting from FBS, proved to be negligibly detected. The wound healing and angiogenic effects of highly purified UCMSC-derived exosomes were improved about 23.1% and 71.4%, respectively, with human coronary artery endothelial cells (HCAEC). It suggests that the defined MSC exosome with high yield and purity could increase regenerative activity.

17.
Biomater Sci ; 8(7): 2018-2030, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32080689

RESUMO

Poly(l-lactic acid) (PLLA) is a biocompatible and biodegradable polymer that has received much attention as a biomedical material. However, PLLA also produces by-products that acidify the surrounding tissues during in vivo degradation, which induces inflammatory responses. To overcome these problems, magnesium hydroxide nanoparticles (nano-magnesium hydroxide; nMH) were added to the PLLA matrix as a bioactive filler that can suppress inflammatory responses by neutralizing the acidified environment caused by the degradation of PLLA. Despite the advantages of nMH, the strong cohesion of these nanoparticles toward each other makes it difficult to manufacture a polymer matrix containing homogeneous nanoparticles through thermal processing. Here, we prepared two types of surface-modified nMH with oligolactide (ODLLA) utilizing grafting to (GT) and grafting from (GF) strategies to improve the mechanical and biological characteristics of the organic-inorganic hybrid composite. The incorporation of surface-modified nMH not only enhanced mechanical properties, such as Young's modulus, but also improved homogeneity of magnesium hydroxide particles in the PLLA matrix due to the increase in interfacial interaction. Additionally, the PLLA composites with surface-modified nMH exhibited reduced bulk erosion during hydrolytic degradation with lower cytotoxicity and immunogenicity. Hemocompatibility tests on the PLLA composites with nMH showed a higher albumin to fibrinogen ratio (AFR) and a lower influence of platelet activation, when compared with unmodified control samples. Taken all together, the surface-modified nMH could be seen to successfully improve the physical and biological characteristics of polymer composites. We believe this technology has great potential for the development of hybrid nanocomposites for biomedical devices, including cardiovascular implants.


Assuntos
Dioxanos/química , Hidróxido de Magnésio/farmacologia , Poliésteres/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Módulo de Elasticidade , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidróxido de Magnésio/química , Teste de Materiais , Nanopartículas , Polímeros/química , Propriedades de Superfície
18.
Tissue Eng Regen Med ; 17(2): 155-163, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32026314

RESUMO

BACKGROUND: Inflammation induces dysfunction of endothelial cells via inflammatory cell adhesion, and this phenomenon and reactive oxygen species accumulation are pivotal triggers for atherosclerosis-related vascular disease. Although exosomes are excellent candidate as an inhibitor in the inflammation pathway, it is necessary to develop exosome-mimetic nanovesicles (NVs) due to limitations of extremely low release rate and difficult isolation of natural exosomes. NVs are produced in much larger quantities than natural exosomes, but due to the low flexibility of the cell membranes, the high loss caused by hanging on the filter membranes during extrusion remains a challenge to overcome. Therefore, by making cell membranes more flexible, more efficient production of NVs can be expected. METHODS: To increase the flexibility of the cell membranes, the suspension of umbilical cord-mesenchymal stem cells (UC-MSCs) was subjected to 5 freeze and thaw cycles (FT) before serial extrusion. After serial extrusion through membranes with three different pore sizes, FT/NVs were isolated using a tangential flow filtration (TFF) system. NVs or FT/NVs were pretreated to the human coronary artery endothelial cells (HCAECs), and then inflammation was induced using tumor necrosis factor-α (TNF-α). RESULTS: With the freeze and thaw process, the production yield of exosome-mimetic nanovesicles (FT/NVs) was about 3 times higher than the conventional production method. The FT/NVs have similar biological properties as NVs for attenuating TNF-α induced inflammation. CONCLUSION: We proposed the efficient protocol for the production of NVs with UC-MSCs using the combination of freeze and thaw process with a TFF system. The FT/NVs successfully attenuated the TNF-α induced inflammation in HCAECs.


Assuntos
Biomimética , Células Endoteliais/metabolismo , Exossomos/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/citologia , Fator de Necrose Tumoral alfa/metabolismo , Cordão Umbilical/citologia , Aterosclerose/metabolismo , Adesão Celular , Citocinas , Humanos , Espécies Reativas de Oxigênio , Células THP-1
19.
ACS Cent Sci ; 4(2): 277-287, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29532028

RESUMO

Uniformly controlling a large number of metal nanostructures with a plasmonically enhanced signal to generate quantitative optical signals and the widespread use of these structures for surface-enhanced Raman scattering (SERS)-based biosensing and bioimaging applications are of paramount importance but are extremely challenging. Here, we report a highly controllable, facile selective-interdiffusive dealloying chemistry for synthesizing the dealloyed intra-nanogap particles (DIPs) with a ∼2 nm intragap in a high yield (∼95%) without the need for an interlayer. The SERS signals from DIPs are highly quantitative and polarization-independent with polarized laser sources. Remarkably, all the analyzed particles displayed the SERS enhancement factors (EFs) of ≥1.1 × 108 with a very narrow distribution of EFs. Finally, we show that DIPs can be used as ultrasensitive SERS-based DNA detection probes for detecting 10 aM to 1 pM target concentrations and highly robust, quantitative real-time cell imaging probes for long-term imaging with low laser power and short exposure time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA