Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Hematol ; 103(4): 1221-1233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413410

RESUMO

In low-risk Myelodysplastic Neoplasms (MDS), increased activity of apoptosis-promoting factors such as tumor necrosis factor (TNFα) and pro-apoptotic Fas ligand (CD95L) have been described as possible pathomechanisms leading to impaired erythropoiesis. Asunercept (APG101) is a novel therapeutic fusion protein blocking CD95, which has previously shown partial efficacy in reducing transfusion requirement in a clinical phase I trial for low-risk MDS patients (NCT01736436; 2012-11-26). In the current study we aimed to evaluate the effect of Asunercept therapy on the clonal bone marrow composition to identify potential biomarkers to predict response. Bone marrow samples of n = 12 low-risk MDS patients from the above referenced clinical trial were analyzed by serial deep whole exome sequencing in a total of n = 58 time points. We could distinguish a mean of 3.5 molecularly defined subclones per patient (range 2-6). We observed a molecular response defined as reductions of dominant clone sizes by a variant allele frequency (VAF) decrease of at least 10% (mean 20%, range: 10.5-39.2%) in dependency of Asunercept treatment in 9 of 12 (75%) patients. Most of this decline in clonal populations was observed after completion of 12 weeks treatment. Particularly early and pronounced reductions of clone sizes were found in subclones driven by mutations in genes involved in regulation of methylation (n = 1 DNMT3A, n = 1 IDH2, n = 1 TET2). Our results suggest that APG101 could be efficacious in reducing clone sizes of mutated hematopoietic cells in the bone marrow of Myelodysplastic Neoplasms, which warrants further investigation.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Humanos , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Células Clonais/patologia , Medula Óssea/patologia , Apoptose , Mutação
2.
Haematologica ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37916386

RESUMO

Inhibitors of anti-apoptotic BCL-2 family proteins in combination with chemotherapy and hypomethylating agents (HMAs) are promising therapeutic approaches in acute myeloid leukemia (AML) and high-risk myelodysplastic syndromes (MDS). Alvocidib, a cyclin-dependent kinase 9 (CDK9) inhibitor and indirect transcriptional repressor of the anti-apoptotic factor MCL-1, has previously shown clinical activity in AML. Availability of biomarkers for response to the alvocidib + 5- AZA could also extend the rationale of this treatment concept to high-risk MDS. In this study, we performed a comprehensive in vitro assessment of alvocidib and 5-AZA effects in n=45 high-risk MDS patients. Our data revealed additive cytotoxic effects of the combination treatment. Mutational profiling of MDS samples identified ASXL1 mutations as predictors of response. Further, increased response rates were associated with higher gene-expression of the pro-apoptotic factor NOXA in ASXL1 mutated samples. The higher sensitivity of ASXL1 mutant cells to the combination treatment was confirmed in vivo in ASXL1Y588X transgenic mice. Overall, our study demonstrated augmented activity for the alvocidib + 5-AZA combination in higher-risk MDS and identified ASXL1 mutations as a biomarker of response for potential stratification studies.

3.
Int J Mol Sci ; 24(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36675239

RESUMO

The erythroferrone gene (ERFE), also termed CTRP15, belongs to the C1q tumor necrosis factor-related protein (CTRP) family. Despite multiple reports about the involvement of CTRPs in cancer, the role of ERFE in cancer progression is largely unknown. We previously found that ERFE was upregulated in erythroid progenitors in myelodysplastic syndromes and strongly predicted overall survival. To understand the potential molecular interactions and identify cues for further functional investigation and the prognostic impact of ERFE in other malignancies, we performed a pan-cancer in silico analysis utilizing the Cancer Genome Atlas datasets. Our analysis shows that the ERFE mRNA is significantly overexpressed in 22 tumors and affects the prognosis in 11 cancer types. In certain tumors such as breast cancer and adrenocortical carcinoma, ERFE overexpression has been associated with the presence of oncogenic mutations and a higher tumor mutational burden. The expression of ERFE is co-regulated with the factors and pathways involved in cancer progression and metastasis, including activated pathways of the cell cycle, extracellular matrix/tumor microenvironment, G protein-coupled receptor, NOTCH, WNT, and PI3 kinase-AKT. Moreover, ERFE expression influences intratumoral immune cell infiltration. Conclusively, ERFE is aberrantly expressed in pan-cancer and can potentially function as a prognostic biomarker based on its putative functions during tumorigenesis and tumor development.


Assuntos
Síndromes Mielodisplásicas , Neoplasias , Hormônios Peptídicos , Humanos , Prognóstico , Hormônios Peptídicos/genética , Hepcidinas/metabolismo , Neoplasias/genética , Microambiente Tumoral
4.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163309

RESUMO

Hyperglycemia, a hallmark of diabetes, can induce inflammatory programming of macrophages. The macrophage scavenger receptor CD163 internalizes and degrades hemoglobin-haptoglobin (Hb-Hp) complexes built due to intravascular hemolysis. Clinical studies have demonstrated a correlation between impaired scavenging of Hb-Hp complexes via CD163 and diabetic vascular complications. Our aim was to identify whether hyperglycemia is able to amplify inflammation via Hb-Hp complex interactions with the immune system. M(IFNγ), M(IL-4), and control M0 macrophages were differentiated out of primary human monocytes in normo- (5 mM) and hyperglycemic (25 mM) conditions. CD163 gene expression was decreased 5.53 times in M(IFNγ) with a further decrease of 1.99 times in hyperglycemia. Hyperglycemia suppressed CD163 surface expression in M(IFNγ) (1.43 times). Flow cytometry demonstrated no impairment of Hb-Hp uptake in hyperglycemia. However, hyperglycemia induced an inflammatory response of M(IFNγ) to Hb-Hp1-1 and Hb-Hp2-2 uptake with different dynamics. Hb-Hp1-1 uptake stimulated IL-6 release (3.03 times) after 6 h but suppressed secretion (5.78 times) after 24 h. Contrarily, Hb-Hp2-2 uptake did not affect IL-6 release after 6h but increased secretion after 24 h (3.06 times). Our data show that hyperglycemia induces an inflammatory response of innate immune cells to Hb-Hp1-1 and Hb-Hp2-2 uptake, converting the silent Hb-Hp complex clearance that prevents vascular damage into an inflammatory process, hereby increasing the susceptibility of diabetic patients to vascular complications.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Haptoglobinas/metabolismo , Hemoglobinas/metabolismo , Hiperglicemia/metabolismo , Inflamação/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Depuradores/metabolismo , Células Cultivadas , Angiopatias Diabéticas/metabolismo , Endocitose/fisiologia , Hemólise/fisiologia , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo
5.
Br J Haematol ; 192(5): 879-891, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486765

RESUMO

Ineffective erythropoiesis and iron overload are common in myelodysplastic syndromes (MDS). Erythroferrone (ERFE) and growth/differentiation factor 15 (GDF15) are two regulators of iron homeostasis produced by erythroid progenitors. Elevated systemic levels of ERFE and GDF15 in MDS are associated with dysregulated iron metabolism and iron overload, which is especially pronounced in MDS with SF3B1 gene mutations. However, the role of ERFE and GDF15 in MDS pathogenesis and their influence on disease progression are largely unknown. Here, we analyzed the expression of ERFE and GDF15 in CD71+ erythroid progenitors of n = 111 MDS patients and assessed their effects on patient survival. The expression of ERFE and GDF15 in MDS was highly aberrant. Unexpectedly, ERFE expression in erythroprogenitors was highly relevant for MDS prognosis and independent of International Prognostic Scoring System (IPSS) stratification. Although ERFE expression was increased in patients with SF3B1 mutations, it predicted overall survival (OS) in both the SF3B1wt and SF3B1mut subgroups. Of note, ERFE overexpression predicted superior OS in the IPSS low/Int-1 subgroup and in patients with normal karyotype. Similar observations were made for GDF15, albeit not reaching statistical significance. In summary, our results revealed a strong association between ERFE expression and MDS outcome, suggesting a possible involvement of ERFE in molecular MDS pathogenesis.


Assuntos
Antígenos CD/análise , Células Precursoras Eritroides/metabolismo , Síndromes Mielodisplásicas/metabolismo , Hormônios Peptídicos/biossíntese , Receptores da Transferrina/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Células Precursoras Eritroides/química , Feminino , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/mortalidade , Síndromes Mielodisplásicas/terapia , Hormônios Peptídicos/genética , Fosfoproteínas/genética , Modelos de Riscos Proporcionais , Fatores de Processamento de RNA/genética , Resultado do Tratamento , Adulto Jovem
6.
Haematologica ; 106(11): 2906-2917, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054116

RESUMO

Somatic mutations in genes coding for splicing factors, e.g. SF3B1, U2AF1, SRSF2, and others are found in approximately 50% of patients with Myelodysplastic Syndromes (MDS). These mutations have been predicted to frequently occur early in the mutational hierarchy of the disease therefore making them particularly attractive potential therapeutic targets. Recent studies in cell lines engineered to carry splicing factor mutations have revealed a strong association with elevated levels of DNA:RNA intermediates (R-loops) and a dependency on proper ATR function. However, data confirming this hypothesis in a representative cohort of primary MDS patient samples have so far been missing. Using CD34+ cells isolated from MDS patients with and without splicing factor mutations as well as healthy controls we show that splicing factor mutation-associated R-loops lead to elevated levels of replication stress and ATR pathway activation. Moreover, splicing factor mutated CD34+ cells are more susceptible to pharmacological inhibition of ATR resulting in elevated levels of DNA damage, cell cycle blockade, and cell death. This can be enhanced by combination treatment with low-dose splicing modulatory compound Pladienolide B. We further confirm the direct association of R-loops and ATR sensitivity with the presence of a splicing factor mutation using lentiviral overexpression of wild-type and mutant SRSF2 P95H in cord blood CD34+ cells. Collectively, our results from n=53 MDS patients identify replication stress and associated ATR signaling to be critical pathophysiological mechanisms in primary MDS CD34+ cells carrying splicing factor mutations, and provide a preclinical rationale for targeting ATR signaling in these patients.


Assuntos
Síndromes Mielodisplásicas , Fosfoproteínas , Humanos , Mutação , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Fosfoproteínas/genética , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Fator de Processamento U2AF/genética
7.
Int J Cancer ; 146(5): 1396-1408, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525266

RESUMO

Chitinase-like proteins (CLP) are chitin-binding proteins that lack chitin hydrolyzing activity, but possess cytokine-like and growth factor-like properties, and play crucial role in intercellular crosstalk. Both human and mice express two members of CLP family: YKL-40 and stabilin-1 interacting chitinase-like protein (SI-CLP). Despite numerous reports indicating the role of YKL-40 in the support of angiogenesis, tumor cell proliferation, invasion and metastasis, the role of its structurally related protein SI-CLP in cancer was not reported. Using gain-of-function approach, we demonstrate in the current study that the expression of recombinant SI-CLP in mouse TS/A mammary adenocarcinoma cells results in significant and persistent inhibition of in vivo tumor growth. Using quantitative immunohistochemistry, we show that on the cellular level this phenomenon is associated with reduced infiltration of tumor-associated macrophages (TAMs), CD4+ and FoxP3+ cells in SI-CLP expressing tumors. Gene expression analysis in TAM isolated from SI-CLP-expressing and control tumors demonstrated that SI-CLP does not affect macrophage phenotype. However, SI-CLP significantly inhibited migration of murine bone-marrow derived macrophages and human primary monocytes toward monocyte-recruiting chemokine CCL2 produced in the tumor microenvironment (TME). Mechanistically, SI-CLP did not affect CCL2/CCR2 interaction, but suppressed cytoskeletal rearrangements in response to CCL2. Altogether, our data indicate that SI-CLP functions as a tumor growth inhibitor in mouse breast cancer by altering cellular composition of TME and blocking cytokine-induced TAM recruitment. Taking into consideration weak to absent expression of SI-CLP in human breast cancer, it can be considered as a therapeutic protein to block TAM-mediated support of breast tumor growth.


Assuntos
Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Transporte/imunologia , Macrófagos/imunologia , Neoplasias Mamárias Experimentais/imunologia , Animais , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Processos de Crescimento Celular/imunologia , Movimento Celular/imunologia , Feminino , Células HEK293 , Humanos , Ativação de Macrófagos , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade
8.
Biol Chem ; 397(3): 231-47, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26733160

RESUMO

Chitinase-like proteins (CLPs) are lectins combining properties of cytokines and growth factors. Human CLPs include YKL-40, YKL-39 and SI-CLP that are secreted by cancer cells, macrophages, neutrophils, synoviocytes, chondrocytes and other cells. The best investigated CLP in cancer is YKL-40. Serum and plasma levels of YKL-40 correlate with poor prognosis in breast, lung, prostate, liver, bladder, colon and other types of cancers. In combination with other circulating factors YKL-40 can be used as a predictive biomarker of cancer outcome. In experimental models YKL-40 supports tumor initiation through binding to RAGE, and is able to induce cancer cell proliferation via ERK1/2-MAPK pathway. YKL-40 supports tumor angiogenesis by interaction with syndecan-1 on endothelial cells and metastatic spread by stimulating production of pro-inflammatory and pro-invasive factors MMP9, CCL2 and CXCL2. CLPs induce production of pro- and anti-inflammatory cytokines and chemokines, and are potential modulators of inflammatory tumor microenvironment. Targeting YKL-40 using neutralizing antibodies exerts anti-cancer effect in preclinical animal models. Multifunctional role of CLPs in regulation of inflammation and intratumoral processes makes them attractive candidates for tumor therapy and immunomodulation. In this review we comprehensively analyze recent data about expression pattern, and involvement of human CLPs in cancer.


Assuntos
Adipocinas/genética , Proteínas de Transporte/genética , Quitinases/genética , Lectinas/genética , Neoplasias/genética , Adipocinas/química , Adipocinas/imunologia , Adipocinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/imunologia , Proteínas de Transporte/metabolismo , Proteína 1 Semelhante à Quitinase-3 , Quitinases/química , Quitinases/imunologia , Quitinases/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Lectinas/química , Lectinas/imunologia , Lectinas/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo
9.
Cancer Immunol Immunother ; 64(7): 873-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25893810

RESUMO

Tumor-associated macrophages (TAM) were shown to support the progression of many solid tumors. However, anti-tumor properties of TAM were also reported in several types of cancer. Here, we investigated the phenotype and functions of TAM in two transgenic mouse models of prostate cancer that display striking differences in tumor growth outcome. Mice expressing prostate-specific antigen (PSA) as a self-antigen specifically in prostate (PSAtg mice) rejected PSA-expressing transgenic adenocarcinoma of mouse prostate (TRAMP) tumors. However, the introduction of HLA-DRB1*1501 (DR2b) transgene presenting PSA-derived peptides in a MHC class II-restricted manner exacerbated the growth of TRAMP-PSA tumors in DR2bxPSA F 1 mice. Despite the difference in tumor growth outcome, tumors in both strains were equally and intensively infiltrated by macrophages on the first week after tumor challenge. TAM exhibited mixed M1/M2 polarization and simultaneously produced pro-inflammatory (TNFα, IL1ß) and anti-inflammatory (IL10) cytokines. TAM from both mouse strains demonstrated antigen-presenting potential and pronounced immunostimulatory activity. Moreover, they equally induced apoptosis of tumor cells. In vivo depletion of macrophages in DR2bxPSA F 1 but not PSAtg mice aggravated tumor growth suggesting that macrophages more strongly contribute to anti-tumor immunity when specific presentation of PSA to CD4+ T cells is possible. In summary, we conclude that in the early stages of tumor progression, the phenotype and functional properties of TAM did not predict tumor growth outcome in two transgenic prostate cancer models. Furthermore, we demonstrated that during the initial stage of prostate cancer development, TAM have the potential to activate T cell immunity and mediate anti-tumor effects.


Assuntos
Adenocarcinoma/imunologia , Cadeias HLA-DRB1/genética , Macrófagos/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Adenocarcinoma/genética , Animais , Apoptose/imunologia , Proliferação de Células , Modelos Animais de Doenças , Cadeias HLA-DRB1/imunologia , Interleucina-10/biossíntese , Interleucina-1beta/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Antígeno Prostático Específico/imunologia , Neoplasias da Próstata/genética , Linfócitos T/imunologia , Fator de Necrose Tumoral alfa/biossíntese
10.
Prostate ; 74(14): 1423-32, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25111463

RESUMO

INTRODUCTION: Recent studies suggest that the cancer immunotherapy based on the blockade of the CTLA-4-mediated inhibitory pathway is efficacious only in select populations, predominantly for immunogenic tumors or when delivered in combination with modalities that can break immunologic tolerance to tumor antigens. METHODS: We studied the effect of CD25+ cell depletion and CTLA-4 blockade on the growth of Transgenic Mouse Adenocarcinoma of Prostate (TRAMP)-PSA tumor cells in DR2bxPSA F1 mice. In these mice, immunological tolerance to PSA was established in a context of the HLA-DRB1*1501(DR2b) allele. RESULTS: In our model, single administration of anti-CD25 antibody prior to tumor inoculation significantly increased IFN-γ production in response to the CD8 T cell epitope PSA65-73 , and delayed TRAMP-PSA tumor growth compared to mice treated with isotype control antibodies. In contrast, the anti-tumor effect of the anti-CTLA-4 antibody as a monotherapy was marginal. The combinatory treatment with anti-CD25/anti-CTLA-4 antibodies significantly enhanced anti-tumor immunity and caused more profound delay in tumor growth compared to each treatment alone. The proportion of tumor-free animals was higher in the group that received combination treatment (21%) compared to other groups (2-7%). The enhanced anti-tumor immunity in response to the CD25 depletion or CTLA-4 blockade was only seen in the immunogenic TRAMP-PSA tumor model, whereas the effect was completely absent in mice bearing poorly immunogenic TRAMP-C1 tumors. DISCUSSION: Our data suggest that breaking immunological tolerance to "self" antigens is essential for the therapeutic effect of CTLA-4 blockade. Such combinatory treatment may be a promising approach for prostate cancer immunotherapy.


Assuntos
Antígeno CTLA-4/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/terapia , Linfócitos T Reguladores/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Linfócitos T CD8-Positivos/imunologia , Antígeno CTLA-4/imunologia , Modelos Animais de Doenças , Antígeno HLA-DR2/genética , Antígeno HLA-DR2/imunologia , Humanos , Tolerância Imunológica , Masculino , Camundongos , Camundongos Transgênicos , Antígeno Prostático Específico/sangue , Antígeno Prostático Específico/imunologia , Distribuição Aleatória
11.
Front Oncol ; 14: 1404817, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38835379

RESUMO

Myelodysplastic neoplasms (MDS) are a heterogenous group of clonal stem cell disorders characterized by dysplasia and cytopenia in one or more cell lineages. Anemia is a very common symptom that is often treated with blood transfusions and/or erythropoiesis stimulating factors. Iron overload results from a combination of these factors together with the disease-associated ineffective erythropoiesis, that is seen especially in MDS cases with SF3B1 mutations. A growing body of research has shown that erythroferrone is an important regulator of hepcidin, the master regulator of systemic iron homeostasis. Consequently, it is of interest to understand how this molecule contributes to regulating the iron balance in MDS patients. This short review evaluates our current understanding of erythroferrone in general, but more specifically in MDS and seeks to place in context how the current knowledge could be utilized for prognostication and therapy.

12.
J Leukoc Biol ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512961

RESUMO

Implants and medical devices are efficient and practical therapeutic solutions for a multitude of pathologies. Titanium and titanium alloys are used in orthopedics, dentistry, and cardiology. Despite very good mechanical properties, and corrosion resistance titanium implants can fail due to inflammatory or tissue-degradation related complications. Macrophages are major immune cells that control acceptance of failure of the implant. In this study, for the first time, we have performed a systematic analysis of the response of differentially activated human macrophages (M(Control), M(IFNγ) and M(IL-4)) to the polished and porous titanium surfaces in order to identify the detrimental effect of titanium leading to the tissue destruction and chronic inflammation. Transcriptome analysis revealed that the highest number of differences between titanium and control settings are found in M(IL-4) that model healing type of macrophages. RT-qPCR analysis confirmed that both polished and porous titanium affected expression of cytokines, chitinases/chitinase-like proteins and matrix metalloproteinases. Titanium-induced release and activation of MMP7 by macrophages was enhanced by fibroblasts in both juxtacrine and paracrine cell interaction models. Production of titanium-induced MMPs and cytokines associated with chronic inflammation were independent of the presence of Staphylococcus aureus. MMP7, one of the most pronounced tissue-destroying factor and chitinase-like protein YKL-40 were expressed in CD68+ macrophages in peri-implant tissues of patients with orthopedic implants. In summary, we demonstrated that titanium induces pro-inflammatory and tissue-destructing responses mainly in healing macrophages, and the detrimental effects of titanium surfaces on implant-adjacent macrophages are independent on the bacterial contamination.

13.
Stem Cell Res Ther ; 14(1): 156, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37287056

RESUMO

BACKGROUND: Robust and reliable in vitro and in vivo models of primary cells are necessary to study the pathomechanisms of Myelodysplastic Neoplasms (MDS) and identify novel therapeutic strategies. MDS-derived hematopoietic stem and progenitor cells (HSPCs) are reliant on the support of bone marrow (BM) derived mesenchymal stroma cells (MSCs). Therefore, isolation and expansion of MCSs are essential for successfully modeling this disease. For the clinical use of healthy MSCs isolated from human BM, umbilical cord blood or adipose tissue, several studies showed that xeno-free (XF) culture conditions resulted in superior growth kinetics compared to MSCs cultured in the presence of fetal bovine serum (FBS). In this present study, we investigate, whether the replacement of a commercially available MSC expansion medium containing FBS with a XF medium is beneficial for the expansion of MSCs derived from BM of MDS patients which are often difficult to cultivate. METHODS: MSCs isolated from BM of MDS patients were cultured and expanded in MSC expansion medium with FBS or XF supplement. Subsequently, the impact of culture media on growth kinetics, morphology, immunophenotype, clonogenic potential, differentiation capacity, gene expression profiles and ability to engraft in immunodeficient mouse models was evaluated. RESULTS: Significant higher cell numbers with an increase in clonogenic potential were observed during culture of MDS MSCs with XF medium compared to medium containing FBS. Differential gene expression showed an increase in transcripts associated with MSC stemness after expansion with XF. Furthermore, immunophenotypes of the MSCs and their ability to differentiate into osteoblasts, adipocytes or chondroblasts remained stable. MSCs expanded with XF media were similarly supportive for creating MDS xenografts in vivo as MSCs expanded with FBS. CONCLUSION: Our data indicate that with XF media, higher cell numbers of MDS MSCs can be obtained with overall improved characteristics in in vitro and in vivo experimental models.


Assuntos
Medula Óssea , Células-Tronco Mesenquimais , Animais , Camundongos , Humanos , Meios de Cultura Livres de Soro , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Tecido Adiposo , Proliferação de Células , Células Cultivadas
14.
Front Immunol ; 14: 1000497, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960065

RESUMO

Introduction: Tumor resistance to chemotherapy and metastatic relapse account for more than 90% of cancer specific mortality. Tumor-associated macrophages (TAMs) can process chemotherapeutic agents and impair their action. Little is known about the direct effects of chemotherapy on TAMs. Methods: The effect of chemotherapeutic platinum agent cisplatin was assessed in the model system of human ex vivo TAMs. Whole-transcriptome sequencing for paired TAMs stimulated and not stimulated by cisplatin was analysed by NGS. Endocytic uptake of EGF was quantified by flow cytometry. Confocal microscopy was used to visualize stabilin-1-mediated internalization and endocytic trafficking of EGF in CHO cells expressing ectopically recombinant stabilin-1 and in stabilin-1+ TAMs. In cohort of patients with breast cancer, the effect of platinum therapy on the transcriptome of TAMs was validated, and differential expression of regulators of endocytosis was identified. Results: Here we show that chemotherapeutic agent cisplatin can initiate detrimental transcriptional and functional programs in TAMs, without significant impairment of their viability. We focused on the clearance function of TAMs that controls composition of tumor microenvironment. For the first time we demonstrated that TAMs' scavenger receptor stabilin-1 is responsible for the clearance of epidermal growth factor (EGF), a potent stimulator of tumor growth. Cisplatin suppressed both overall and EGF-specific endocytosis in TAMs by bidirectional mode: suppression of positive regulators and stimulation of negative regulators of endocytosis, with strongest effect on synaptotagmin-11 (SYT11), confirmed in patients with breast cancer. Conclusion: Our data demonstrate that synergistic action of cytostatic agents and innovative immunomodulators is required to overcome cancer therapy resistance.


Assuntos
Neoplasias da Mama , Fator de Crescimento Epidérmico , Cricetinae , Animais , Humanos , Feminino , Fator de Crescimento Epidérmico/metabolismo , Macrófagos Associados a Tumor/metabolismo , Cricetulus , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Platina , Macrófagos/metabolismo , Proteínas de Transporte/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Microambiente Tumoral , Sinaptotagminas/metabolismo
15.
Nat Commun ; 14(1): 1497, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36932114

RESUMO

Limited response rates and frequent relapses during standard of care with hypomethylating agents in myelodysplastic neoplasms (MN) require urgent improvement of this treatment indication. Here, by combining 5-azacytidine (5-AZA) with the pan-lysyl oxidase inhibitor PXS-5505, we demonstrate superior restoration of erythroid differentiation in hematopoietic stem and progenitor cells (HSPCs) of MN patients in 20/31 cases (65%) versus 9/31 cases (29%) treated with 5-AZA alone. This effect requires direct contact of HSPCs with bone marrow stroma components and is dependent on integrin signaling. We further confirm these results in vivo using a bone marrow niche-dependent MN xenograft model in female NSG mice, in which we additionally demonstrate an enforced reduction of dominant clones as well as significant attenuation of disease expansion and normalization of spleen sizes. Overall, these results lay out a strong pre-clinical rationale for efficacy of combination treatment of 5-AZA with PXS-5505 especially for anemic MN.


Assuntos
Síndromes Mielodisplásicas , Transtornos Mieloproliferativos , Neoplasias , Humanos , Feminino , Camundongos , Animais , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Eritropoese , Proteína-Lisina 6-Oxidase , Células-Tronco Hematopoéticas , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/patologia , Transtornos Mieloproliferativos/patologia , Neoplasias/patologia
16.
Leukemia ; 36(1): 236-247, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34172896

RESUMO

Preclinical research of myelodysplastic syndromes (MDSs) is hampered by a lack of feasible disease models. Previously, we have established a robust patient-derived xenograft (PDX) model for MDS. Here we demonstrate for the first time that this model is applicable as a preclinical platform to address pending clinical questions by interrogating the efficacy and safety of the thrombopoietin receptor agonist eltrombopag. Our preclinical study included n = 49 xenografts generated from n = 9 MDS patient samples. Substance efficacy was evidenced by FACS-based human platelet quantification and clonal bone marrow evolution was reconstructed by serial whole-exome sequencing of the PDX samples. In contrast to clinical trials in humans, this experimental setup allowed vehicle- and replicate-controlled analyses on a patient-individual level deciphering substance-specific effects from natural disease progression. We found that eltrombopag effectively stimulated thrombopoiesis in MDS PDX without adversely affecting the patients' clonal composition. In conclusion, our MDS PDX model is a useful tool for testing new therapeutic concepts in MDS preceding clinical trials.


Assuntos
Benzoatos/uso terapêutico , Hidrazinas/uso terapêutico , Síndromes Mielodisplásicas/tratamento farmacológico , Pirazóis/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Prognóstico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Exp Hematol ; 107: 38-50, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34952140

RESUMO

Patient-derived xenograft (PDX) models have emerged as versatile preclinical platforms for investigation of functional pathomechanisms in myelodysplastic syndromes (MDS) and other myeloid neoplasms. However, despite increasingly improved methodology, engraftment efficiencies frequently remain low. Humanized three-dimensional scaffold models (ossicle xenotransplantation models) in immunocompromised mice have recently been found to enable improved engraftment rates of healthy and malignant human hematopoiesis. We therefore interrogated the feasibility of using four different three-dimensional ossicle-based PDX models for application with primary MDS samples. In a fully standardized comparison, we evaluated scaffold materials such as Gelfoam, extracellular matrix (ECM), and human or xenogenous bone substance in comparison to intrafemoral (IF) co-injection of bone marrow (BM)-derived mesenchymal stromal cells (MSCs) and CD34+ hematopoietic stem and progenitor cells (HSPCs). Our study included13 primary MDS patient samples transplanted in parallel according to these five different conditions. Engraftment of MDS samples was assessed by flow cytometry, immunohistological staining, and molecular validation. We determined that three-dimensional ossicle-based methods achieved higher relative rates of engraftment and enabled long-term retrievability of patient-derived MSCs from implanted ossicles. In summary, HSPCs and MSCs derived from MDS BM, which did not significantly engraft in NSG mice after intrafemoral injection, were able to colonize humanized scaffold models. Therefore, these models are promising new xenotransplantation techniques for addressing preclinical and functional questions of the interaction between hematopoiesis and the BM niche in MDS.


Assuntos
Células-Tronco Mesenquimais , Síndromes Mielodisplásicas , Animais , Células da Medula Óssea/patologia , Modelos Animais de Doenças , Hematopoese , Células-Tronco Hematopoéticas/patologia , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Síndromes Mielodisplásicas/patologia , Transplante Heterólogo
18.
J Cell Sci ; 122(Pt 18): 3365-73, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19726632

RESUMO

Stabilin-1 is specifically expressed in alternatively activated macrophages. These macrophages participate in anti-inflammatory and healing processes, and display a high phagocytic capacity. In this study, we provide evidence that stabilin-1 is a membrane receptor that performs a crucial function in the clearance of cell corpses. Stabilin-1 is expressed on the cell surface of alternatively activated macrophages and is recruited to the sites of recognition and engulfment of apoptotic bodies, as well as to early phagosomes. Blocking stabilin-1 in macrophages results in defective engulfment of aged red blood cells. Ectopic expression of stabilin-1 induces the binding and engulfment of aged cells in mouse fibroblast L cells. The binding and phagocytosis are dependent on phosphatidylserine (PS), which is well known as an engulfing ligand. Furthermore, using PS-coated beads, we demonstrate that PS directly interacts with stabilin-1 and is sufficient for stabilin-1-mediated phagocytosis. EGF-like domain repeat in stabilin-1 is responsible for PS recognition and binding. Thus, our results demonstrate that stabilin-1, found on alternatively activated macrophages, is a phagocytic receptor mediating the clearance of apoptotic cells in a PS-dependent manner. Therefore, this protein might play an important role in the maintenance of tissue homeostasis and prevention of autoimmunity.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Ativação de Macrófagos , Macrófagos/citologia , Macrófagos/metabolismo , Fagocitose , Fosfatidilserinas/metabolismo , Receptores de Retorno de Linfócitos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/química , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Dexametasona/farmacologia , Fator de Crescimento Epidérmico/química , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Interleucina-4/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Fagocitose/efeitos dos fármacos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Receptores de Retorno de Linfócitos/química
19.
Nat Commun ; 12(1): 6170, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697318

RESUMO

The bone marrow (BM) stroma in myeloid neoplasms is altered and it is hypothesized that this cell compartment may also harbor clonal somatically acquired mutations. By exome sequencing of in vitro expanded mesenchymal stromal cells (MSCs) from n = 98 patients with myelodysplastic syndrome (MDS) and n = 28 healthy controls we show that these cells accumulate recurrent mutations in genes such as ZFX (n = 8/98), RANK (n = 5/98), and others. MDS derived MSCs display higher mutational burdens, increased replicative stress, senescence, inflammatory gene expression, and distinct mutational signatures as compared to healthy MSCs. However, validation experiments in serial culture passages, chronological BM aspirations and backtracking of high confidence mutations by re-sequencing primary sorted MDS MSCs indicate that the discovered mutations are secondary to in vitro expansion but not present in primary BM. Thus, we here report that there is no evidence for clonal mutations in the BM stroma of MDS patients.


Assuntos
Medula Óssea/patologia , Células-Tronco Mesenquimais/patologia , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Medula Óssea/metabolismo , Células Cultivadas , Exoma/genética , Feminino , Genótipo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Mutação , Síndromes Mielodisplásicas/patologia , Fenótipo , Microambiente Tumoral
20.
Oncol Lett ; 19(3): 2404-2412, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194740

RESUMO

The scavenger receptor stabilin-1 has been reported to be expressed by tumor-associated macrophages (TAMs) and to facilitate tumor growth and metastasis in mouse models of breast carcinoma and melanoma. However, to the best of our knowledge, its expression and association with prognosis in human gastric cancer has not been evaluated. The present study investigated the expression of stabilin-1 and its association with clinicopathological parameters in patients with gastric cancer. The expression of stabilin-1 was evaluated by immunohistochemical staining of gastric cancer tissue samples of 371 Chinese patients with primary gastric adenocarcinoma. Confocal laser scanning microscopy was used to determine the cellular source of stabilin-1 in the gastric cancer tissues using anti-CD68, anti-CD163, anti-stabilin-1 and anti-secreted protein acidic and rich in cysteine antibodies. A higher number of stabilin-1-positive cells were observed in the cancer tissues of primary gastric adenocarcinoma compared with adjacent non-cancerous tissues of primary gastric adenocarcinoma (P<0.001); the majority of stabilin-1-positve cells were CD68+/CD163+ macrophages. Poorly-differentiated gastric cancer tissue had fewer stabilin-1-positive cells compared with medium- and well-differentiated gastric cancer (P=0.030). A higher number of stabilin-1-positive cells were found in the early Tumor-Node-Metastasis (TNM) stage (TNM I stage) of primary gastric adenocarcinoma (P=0.038) compared with TNM stage IV. For patients with TNM stage I disease, a higher number of stabilin-1-positive TAMs was associated with shorter cumulative survival (P<0.05). Overall, stabilin-1 was found to be expressed by CD68+ TAMs in human gastric cancer. The high expression of stabilin-1 in TNM stage I disease was associated with poor patient survival, indicating the clinical significance of stabilin-1 in gastric cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA