Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Chemistry ; 30(28): e202400166, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38530333

RESUMO

Spin-polarized donor radicals based on tetrathiafulvalene (TTF) derivatives and nitronyl nitroxide (NN) radicals in which one-electron oxidation involves the HOMO instead of the SOMO are well known for exhibiting magnetoresistance. In particular, BTBN consists of one dibromo-TTF and one NN radical, which are linked by a phenyl coupler group. One of the key factors driving magnetoresistance is the presence of intramolecular ferromagnetic (FM) coupling between the oxidized π-donor (TTF+⋅, D unit) and NN (R unit). Here, a theoretical study is carried out to assess suitable candidates with enhanced FM coupling with respect BTBN, which is thus used as a reference. The study is conducted via in silico chemical modification of the substituents of the BTBN basic functional units (D and R radicals, C coupler) to benefit from the spin polarization mechanism to boost the intramolecular FM coupling, aiming to distort the BTBN radical arrangement within the molecular crystal as little as possible, in the event the material can be synthesized. NICSiso(1) and Wiberg's Bond Order are analyzed to further assist in identifying promising potential candidates, since the decrease in aromaticity is expected to enhance the diradical character and give rise to a larger magnetic coupling value. The most favorable diradical building block to replace the BTBN moiety results from using a hydroxyl-ethylene (-(H)C=C(OH)-) as a coupler preserving BTBN original radicals, namely, NN and TTF+⋅ units. This study aims at illustrating the feasibility of improving the intramolecular FM interaction between radical moieties, which is fully realized, as a first step towards the synthesis of new materials with (possibly) enhanced magnetoresistance properties.

2.
Chemistry ; 30(27): e202400173, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38457260

RESUMO

The Wittig reaction is one of the most important processes in organic chemistry for the asymmetric synthesis of olefinic compounds. In view of the increasingly acknowledged potentiality of the electric fields in promoting reactions, here we will consider the effect of the oriented external electric field (OEEF) on the second step of Wittig reaction (i. e. the ring opening oxaphosphetane) in a model system for non-stabilized ylides. In particular, we have determined the optimal direction and strength of the electric field that should be applied to annihilate the reaction barrier of the ring opening through the polarizable molecular electric dipole (PMED) model that we have recently developed. We conclude that the application of the optimal external electric field for the oxaphosphetane ring opening favours a Bestmann-like mechanism.

3.
J Am Chem Soc ; 145(10): 5674-5683, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36877195

RESUMO

Two-dimensional conjugated polymers (2DCPs)─organic 2D materials composed of arrays of carbon sp2 centers connected by π-conjugated linkers─are attracting increasing attention due to their potential applications in device technologies. This interest stems from the ability of 2DCPs to host a range of correlated electronic and magnetic states (e.g., Mott insulators). Substitution of all carbon sp2 centers in 2DCPs by nitrogen or boron results in diamagnetic insulating states. Partial substitution of C sp2 centers by B or N atoms has not yet been considered for extended 2DCPs but has been extensively studied in the analogous neutral mixed-valence molecular systems. Here, we employ accurate first-principles calculations to predict the electronic and magnetic properties of a new class of hexagonally connected neutral mixed-valence 2DCPs in which every other C sp2 nodal center is substituted by either a N or B atom. We show that these neutral mixed-valence 2DCPs significantly energetically favor a state with emergent superexchange-mediated antiferromagnetic (AFM) interactions between C-based spin-1/2 centers on a triangular sublattice. These AFM interactions are surprisingly strong and comparable to those in the parent compounds of cuprate superconductors. The rigid and covalently linked symmetric triangular AFM lattice in these materials thus provides a highly promising and robust basis for 2D spin frustration. As such, extended mixed-valence 2DCPs are a highly attractive platform for the future bottom-up realization of a new class of all-organic quantum materials, which could host exotic correlated electronic states (e.g., unusual magnetic ordering, quantum spin liquids).

4.
Phys Chem Chem Phys ; 25(17): 12490-12499, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37097166

RESUMO

Exploring the chemical space of a given ligand aiming to modulate its ligand field strength is a versatile strategy for the fine-tuning of physical properties such as the transition temperature (T1/2) of spin-crossover (SCO) complexes. The computational study presented herein aims at systematically exploring the extent to which the ligand substituent effects can modulate T1/2 in two families of Fe(III) SCO systems with a N4O2 coordination environment and at identifying the best descriptors for fast and accurate prediction of changes in T1/2 upon ligand functionalization. B3LYP* calculations show that the attachment of substituents to ß-ketoiminato fragments (L1) leads to drastic changes in T1/2, while functionalization of phenolato moieties (L2) allows for a finer degree of control over T1/2. Natural Bond Orbital (NBO) charges of the donor atoms, Hammett parameters for both para and meta-functionalization of L2, and Swain-Lupton parameters for L1 and para-functionalization of L2 have been found to be the suitable descriptors for predicting the changes in T1/2. Further analysis of the ligand-field splitting in such systems rationalizes the observed trends and shows that ligand substituents modify both the σ and π bonds between the Fe(III) center and the ligands. Thus, we provide simple yet reliable guidelines for the rational design of new SCO systems with specific values of T1/2 based on their ligand design.

5.
J Chem Phys ; 159(11)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37724726

RESUMO

The use of oriented external electric fields (OEEFs) to promote and control chemical reactivity has motivated many theoretical and computational studies in the last decade to model the action of OEEFs on a molecular system and its effects on chemical processes. Given a reaction, a central goal in this research area is to predict the optimal OEEF (oOEEF) required to annihilate the reaction energy barrier with the smallest possible field strength. Here, we present a model rooted in catastrophe and optimum control theories that allows us to find the oOEEF for a given reaction valley in the potential energy surface (PES). In this model, the effective (or perturbed) PES of a polarizable molecular system is constructed by adding to the original, non-perturbed, PES a term accounting for the interaction of the OEEF with the intrinsic electric dipole and polarizability of the molecular system, so called the polarizable molecular electric dipole (PMED) model. We demonstrate that the oOEEF can be established by locating a point in the original PES with unique topological properties: the optimal barrier breakdown or bond-breaking point (oBBP). The essential feature of the oBBP structure is the fact that this point maintains its topological properties for all the applied OEEFs, also for the unperturbed PES, thus becoming much more relevant than the commonly used minima and transition state structures. The PMED model proposed here has been implemented in an open access package and is shown to successfully predict the oOEEF for two processes: an isomerization reaction of a cumulene derivative and the Huisgen cycloaddition reaction.

6.
Phys Chem Chem Phys ; 24(20): 12196-12207, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35551353

RESUMO

Bisdithiazolyl radicals have furnished in recent years multiple examples of molecular materials with promising conductive and magnetic properties. The electronic band structure and magnetic ordering in four different isostructural pyridine-bridged bisdithiazolyl and Selenium substituted compounds have been studied by means of hybrid DFT based methods as implemented in the CRYSTAL code. The full rationalization of the properties of these multifunctional magnetic molecular materials requires a careful description of their complex open-shell electronic structure. The results describe the systems as narrow band (0.2-0.3 eV dispersion) open-shell semiconductors with a gap of 1.15-1.40 eV between the valence and conducting bands. The bands defining the insulating gap are dominated by orbital contributions arising from the heteroatoms sitting in the outer rings. A low energy closed-shell metallic solution is found at 0.25-0.35 eV above the magnetic solutions thus suggesting a complex mechanism for electric conduction with band and hopping contributions. The observed trend of the conductivity is in line with the variation of the insulating gap but more rigorous modelling is required to take into account the details of the band structure of the systems. For all the systems the spin density is well localised on the molecular units and is independent of the magnetic solution. Thus the system can be described as an ensemble of well-defined S = 1/2 magnetic centres using a two-body Heisenberg-Dirac-van Vleck spin Hamiltonian. The lowest energy electronic solutions are in line with the observed magnetic behaviour at low temperature. The set of competing magnetic exchange interactions that emerges from using a suitable mapping to consistently describe the low energy magnetic solutions explains the variety of magnetic responses (absence of long-range magnetic order, antiferromagnetism or ferromagnetism) of the four studied compounds at low temperatures.

7.
J Comput Chem ; 42(3): 156-165, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33124054

RESUMO

We propose a canonical sampling method to refine metadynamics simulations a posteriori, where the hills obtained from metadynamics are used as a time-invariant bias potential. In this way, the statistical error in the computed reaction barriers is reduced by an efficient sampling of the collective variable space at the free energy level of interest. This simple approach could be useful particularly when two or more free energy barriers are to be compared among chemical reactions in different or competing conditions. The method was then applied to study the acid dependence of polyalcohol dehydration reactions in high-temperature aqueous solutions. It was found that the reaction proceeds consistently via an SN 2 mechanism, whereby the free energy of protonation of the hydroxyl group created as an intermediate is affected significantly by the acidic species. Although demonstration is shown for a specific problem, the computational method suggested herein could be generally used for simulations of complex reactions in the condensed phase.

8.
Phys Chem Chem Phys ; 23(6): 3844-3855, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33537689

RESUMO

The ability to control the chemical conformation of a system via external stimuli is a promising route for developing molecular switches. For eventual deployment as viable sub-nanoscale components that are compatible with current electronic device technology, conformational switching should be controllable by a local electric field (i.e. E-field gateable) and accompanied by a rapid and significant change in conductivity. In organic chemical systems the degree of π-conjugation is linked to the degree of electronic delocalisation, and thus largely determines the conductivity. Here, by means of accurate first principles calculations, we study the prototypical biphenyl based molecular system in which the dihedral angle between the two rings determines the degree of conjugation. In order to make this an E-field gateable system we create a net dipole by asymmetrically functionalising one ring with: (i) electron withdrawing (F, Br and CN), (ii) electron donating (NH2), and (iii) mixed (NH2/NO2) substituents. In this way, the application of an E-field interacts with the dipolar system to influence the dihedral angle, thus controlling the conjugation. For all considered substituents we consider a range of E-fields, and in each case extract conformational energy profiles. Using this data we obtain the minimum E-field required to induce a barrierless switching event for each system. We further extract the estimated switching speeds, the conformational probabilities at finite temperatures, and the effect of applied E-field on electronic structure. Consideration of these data allow us to assess which factors are most important in the design of efficient gateable electrical molecular switches.

9.
Phys Chem Chem Phys ; 22(9): 4938-4945, 2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32096536

RESUMO

The thermal spin crossover (SCO) phenomenon refers to an entropy-driven spin transition in some materials based on d6-d9 transition metal complexes. While its molecular origin is well known, intricate SCO behaviours are increasingly common, in which the spin transition occurs concomitantly to e.g. phase transformations, solvent absorption/desorption, or order-disorder processes. The computational modelling of such cases is challenging, as it requires accurate spin state energies in the solid state. Density Functional Theory (DFT) is the best framework, but most DFT functionals are unable to balance the spin state energies. While a few hybrid functionals perform better, they are still too expensive for solid-state minima searches in moderate-size systems. The best alternative is to dress cheap local (LDA) or semi-local (GGA) DFT functionals with a Hubbard-type correction (DFT+U). However, the parametrization of U is not straightforward due to the lack of reference values, and because ab initio parametrization methods perform poorly. Moreover, SCO complexes undergo notable structural changes upon transition, so intra- and inter-molecular interactions might play an important role in stabilizing either spin state. As a consequence, the U parameter depends strongly on the dispersion correction scheme that is used. In this paper, we parametrize U for nine reported SCO compounds (five based on FeII, 1-5 and four based on FeIII, 6-9) when using the D3 and D3-BJ dispersion corrections. We analyze the impact of the dispersion correction treatments on the SCO energetics, structure, and the unit cell dimensions. The average U values are different for each type of metal ion (FeIIvs. FeIII), and dispersion correction scheme (D3 vs. D3-BJ) but they all show excellent transferability, with mean absolute errors (MAE) below chemical accuracy (i.e. MAE <4 kJ mol-1). This enables a better description of SCO processes and, more generally, of spin state energetics, in materials containing FeII and FeIII ions.

10.
Phys Rev Lett ; 122(8): 086801, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932588

RESUMO

Thiolated gold nanointerfaces play a key role in numerous fields of science, technology, as well as modern medicine to coat, functionalize, and protect. Our computational study reveals that the mechanical vs thermal stabilities of aliphatic thiolates on gold surfaces are strikingly different from those of aromatic thiolates. The aliphatic thiolates feature, at the same time, a higher thermal desorption energy but a lower mechanical rupture force than thiophenolates. Our analysis discloses that this most counterintuitive property is due to different mechanochemical detachment mechanisms. Electronic structure analyses along the detachment pathways trace this back to the distinct electronic properties of the S─Au bond in stretched nanojunctions. The discoveries that it is a higher thermal stability that entails a lower mechanical stability and that mechanical loads generate different local nanostructures depending on the nature of the thiolate are highly relevant for the rational design of improved thiol-gold nanocontacts.

11.
Phys Chem Chem Phys ; 20(31): 20406-20416, 2018 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-30042990

RESUMO

Magnetic bistability in organic-radical based materials has attracted significant interest due to its potential application in electronic devices. The first-principles bottom-up study herein presented aims at elucidating the key factors behind the different magnetic response of the low and high temperature phases of four different switchable dithiazolyl (DTA)-based compounds. The drastic change in the magnetic response upon spin transition is always due to the changes in the JAB magnetic interactions between adjacent radicals along the π-stacks of the crystal, which in turn are driven mostly by the changes in the interplanar distance and degree of lateral slippage, according to the interpretation of a series of magneto-structural correlation maps. Furthermore, specific geometrical dispositions have been recognized as a ferromagnetic fingerprint in such correlations. Our results thus show that an appropriate substitution of the chemical skeleton attached to the DTA ring could give rise to new organic materials with dominant ferromagnetic interactions.

12.
Chemistry ; 23(32): 7772-7784, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28370525

RESUMO

One of the most remarkable bistable materials reported so far is made of π dimers of a butyl-substituted spirobiphenalenyl boron radical (butyl-SBP). The phase transition of this material, which is accompanied by changes in its optical, conductive, and magnetic properties, occurs with a hysteretic loop 25 K wide centered at 335 K. Herein, a computational study is presented aimed at deciphering the origin of this hysteresis. The phase transition of butyl-SBP consists of a spin transition of the constituent π dimers coupled with an order-disorder transition involving the butyl chains linked to the nitrogen atoms of the superimposed phenalenyl rings of the π dimer. Below 335 K, the terminal methyl group of the butyl chains adopts a gauche conformation with respect to the methylene unit bonded to the nitrogen atom. Above 335 K, the methyl group is in an anti conformation and exhibits dynamic disorder. The gauche→anti conformational rearrangement triggers the spin transition of the π dimers and is responsible for the hysteretic behavior of butyl-SBP. Specifically, the onset of the phase transition in the heating mode, and thus, the width of the hysteresis loop, are governed by the high energy cost and strong structural cooperative effects associated with this conformational change. Our results show that coupling a spin switch with a conformational switch in a molecular crystal provides a promising strategy in the design of new bistable materials.

13.
Chemistry ; 23(14): 3479-3489, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28124498

RESUMO

Dithiazolyl (DTA)-based radicals have furnished many examples of organic spin-transition materials, some of them occurring with hysteresis and some others without. Herein, we present a combined computational and experimental study aimed at deciphering the factors controlling the existence or absence of hysteresis by comparing the phase transitions of 4-cyanobenzo-1,3,2-dithiazolyl and 1,3,5-trithia-2,4,6-triazapentalenyl radicals, which are prototypical examples of non-bistable and bistable spin transitions, respectively. Both materials present low-temperature diamagnetic and high-temperature paramagnetic structures, characterized by dimerized (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n and regular (⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅A⋅⋅⋅)n π-stacks of radicals, respectively. We show that the regular π-stacks are not potential energy minima but average structures arising from a dynamic inter-conversion between two degenerate dimerized configurations: (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n ↔(-A⋅⋅⋅A-A⋅⋅⋅A-)n . The emergence of this intra-stack dynamics upon heating gives rise to a second-order phase transition that is responsible for the change in the dominant magnetic interactions of the system. This suggests that the promotion of a (⋅⋅⋅A-A⋅⋅⋅A-A⋅⋅⋅)n ↔(-A⋅⋅⋅A-A⋅⋅⋅A-)n dynamics is a general mechanism for triggering spin transitions in DTA-based materials. Yet, this intra-stack dynamics does not suffice to generate bistability, which also requires a rearrangement of the intermolecular bonds between the π-stacks via a first-order phase transition.

14.
Chemistry ; 23(55): 13648-13659, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28621917

RESUMO

Controlling the charges and spins of molecules lies at the heart of spintronics. A photoswitchable molecule consisting of two independent spins separated by a photoswitchable moiety was designed in the form of new ligand H4 L, which features a dithienylethene photochromic unit and two lateral coordinating moieties, and yields molecules with [MM⋅⋅⋅MM] topology. Compounds [M4 L2 (py)6 ] (M=Cu, 1; Co, 2; Ni, 3; Zn, 4) were prepared and studied by single-crystal X-ray diffraction (SCXRD). Different metal centers can be selectively distributed among the two chemically distinct sites of the ligand, and this enables the preparation of many double-spin systems. Heterometallic [MM'⋅⋅⋅M'M] analogues with formulas [Cu2 Ni2 L2 (py)6 ] (5), [Co2 Ni2 L2 (py)6 ] (6), [Co2 Cu2 L2 (py)6 ] (7), [Cu2 Zn2 L2 (py)6 ] (8), and [Ni2 Zn2 L2 (py)6 ] (9) were prepared and analyzed by SCXRD. Their composition was established unambiguously. All complexes exhibit two weakly interacting [MM'] moieties, some of which embody two-level quantum systems. Compounds 5 and 8 each exhibit a pair of weakly coupled S=1/2 spins that show quantum coherence in pulsed Q-band EPR spectroscopy, as required for quantum computing, with good phase memory times (TM =3.59 and 6.03 µs at 7 K). Reversible photoswitching of all the molecules was confirmed in solution. DFT calculations on 5 indicate that the interaction between the two spins of the molecule can be switched on and off on photocyclization.

15.
Inorg Chem ; 56(8): 4475-4484, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28333462

RESUMO

The spin transition of Fe(II) complexes is the subject of intensive synthetic and computational efforts. In this manuscript, we analyze the spin crossover (SCO) of [Fe(E-dpsp)2]2+ (1), which features a spin transition depending on the cocrystallizing solvent molecules. Whereas the use of acetone results in a hysteretic spin transition at ∼170 K, the use of propylene carbonate (PC) results in a permanent diamagnetic signal up to 300 K. By means of DFT+U+D2 calculations in the solid state of the material, we unravel the reasons for such different behavior. Our results allow us to ascribe the relatively low transition temperature of 1(BF4)2·acetone to the distorted arrangement of the SCO molecules in the low-spin state of the material. In turn, intermolecular interactions play the primary role in the case of 1(BF4)2·2PC. In particular, we found that solvent-solvent interactions actively promote the stability of the low-spin state due to the formation of PC dimers. These dimers would appear at larger distances in the high-spin phase, with the subsequent loss of phase stability. This is yet another proof of how subtle is the spin transition phenomenon in Fe(II)-based architectures.

16.
Inorg Chem ; 56(9): 5441-5454, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28406628

RESUMO

The synthesis, structure, magnetic properties, and theoretical analysis of a new phase of dichloro(2-chloro-3-methylpyridine)copper(II) (2) and its isomorphous analogue dichloro(2-bromo-3-methylpyridine)copper(II) (3) are reported. Both complexes crystallize in the orthorhombic space group Pbca and present square pyramidal Cu(II) ions bridged into chains by chloride ions with each copper(II) bearing a single pyridine ligand. Variable temperature magnetic susceptibility measurements were well fit by a uniform one-dimensional ferromagnetic chain model with 2, J = 69.0(7) K, C = 0.487 emu-K/mol-Oe; 3, J = 73.9(4) K, C = 0.463 emu-K/mol-Oe (H = -JΣSi·Sj Hamiltonian). The experimental J-values were confirmed via theoretical calculations. Comparison to a known disordered polymorph of dichloro(2-chloro-3-methylpyridine)copper(II), 1, shows marked differences as there are significant antiferromagnetic next-nearest neighbor interactions in 1 in addition to randomness induced by the disorder which provide a distinctly different magnetic response. The differences in magnetic behavior are attributed principally to the structural difference in the Cu(II) coordination sphere, 1 being significantly closer to trigonal-bipyramidal, whose difference changes both the nearest and next-nearest neighbor interactions.

17.
J Phys Chem A ; 121(14): 2820-2838, 2017 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-28338327

RESUMO

The theoretical description of a chemical process resulting from the application of mechanical or catalytical stress to a molecule is performed by the generation of an effective potential energy surface (PES). Changes for minima and saddle points by the stress are described by Newton trajectories (NTs) on the original PES. From the analysis of the acting forces we postulate the existence of pulling corridors built by families of NTs that connect the same stationary points. For different exit saddles of different height we discuss the corresponding pulling corridors; mainly by simple two-dimensional surface models. If there are different exit saddles then there can exist saddles of index two, at least, between. Then the case that a full pulling corridor crosses a saddle of index two is the normal case. It leads to an intrinsic hysteresis of such pullings for the forward or the backward reaction. Assuming such relations we can explain some results in the literature. A new finding is the existence of roundabout corridors that can switch between different saddle points by a reversion of the direction. The findings concern the mechanochemistry of molecular systems under a mechanical load as well as the electrostatic force and can be extended to catalytic and enzymatic accelerated reactions. The basic and ground ansatz includes both kinds of forces in a natural way without an extra modification.

18.
J Chem Phys ; 147(15): 152710, 2017 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-29055306

RESUMO

The reaction path of a mechanically induced chemical transformation changes under stress. It is well established that the force-induced structural changes of minima and saddle points, i.e., the movement of the stationary points on the original or stress-free potential energy surface, can be described by a Newton Trajectory (NT). Given a reactive molecular system, a well-fitted pulling direction, and a sufficiently large value of the force, the minimum configuration of the reactant and the saddle point configuration of a transition state collapse at a point on the corresponding NT trajectory. This point is called barrier breakdown point or bond breaking point (BBP). The Hessian matrix at the BBP has a zero eigenvector which coincides with the gradient. It indicates which force (both in magnitude and direction) should be applied to the system to induce the reaction in a barrierless process. Within the manifold of BBPs, there exist optimal BBPs which indicate what is the optimal pulling direction and what is the minimal magnitude of the force to be applied for a given mechanochemical transformation. Since these special points are very important in the context of mechanochemistry and catalysis, it is crucial to develop efficient algorithms for their location. Here, we propose a Gauss-Newton algorithm that is based on the minimization of a positively defined function (the so-called σ-function). The behavior and efficiency of the new algorithm are shown for 2D test functions and for a real chemical example.

19.
J Comput Chem ; 37(10): 947-53, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26695936

RESUMO

Complete active space self-consistent field theory (CASSCF) calculations and subsequent second-order perturbation theory treatment (CASPT2) are discussed in the evaluation of the spin-states energy difference (ΔH(elec)) of a series of seven spin crossover (SCO) compounds. The reference values have been extracted from a combination of experimental measurements and DFT + U calculations, as discussed in a recent article (Vela et al., Phys Chem Chem Phys 2015, 17, 16306). It is definitely proven that the critical IPEA parameter used in CASPT2 calculations of ΔH(elec), a key parameter in the design of SCO compounds, should be modified with respect to its default value of 0.25 a.u. and increased up to 0.50 a.u. The satisfactory agreement observed previously in the literature might result from an error cancellation originated in the default IPEA, which overestimates the stability of the HS state, and the erroneous atomic orbital basis set contraction of carbon atoms, which stabilizes the LS states.

20.
Chemistry ; 22(47): 17037-17046, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27727476

RESUMO

Purely organic radical ions dimerize in solution at low temperature, forming long, multicenter bonds, despite the metastability of the isolated dimers. Here, we present the first computational study of these π-dimers in solution, with explicit consideration of solvent molecules and finite temperature effects. By means of force-field and ab initio molecular dynamics and free energy simulations, the structure and stability of π-[TCNE]22- (TCNE=tetracyanoethylene) dimers in dichloromethane have been evaluated. Although the dimers dissociate at room temperature, they are stable at 175 K and their structure is similar to the one in the solid state, with a cofacial arrangement of the radicals at an interplanar separation of approximately 3.0 Å. The π-[TCNE]22- dimers form dissociated ion pairs with the NBu4+ counterions, and their first solvation shell comprises approximately 20 CH2 Cl2 molecules. Among them, the eight molecules distributed along the equatorial plane of the dimer play a key role in stabilizing the dimer through bridging C-H⋅⋅⋅N contacts. The calculated free energy of dimerization of TCNE.- in solution at 175 K is -5.5 kcal mol-1 . These results provide the first quantitative model describing the pairing of radical ions in solution, and demonstrate the key role of solvation forces on the dimerization process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA