Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Sensors (Basel) ; 19(10)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096615

RESUMO

Human hepatoma HepaRG cells express most drug metabolizing enzymes and constitute a pertinent in vitro alternative cell system to primary cultures of human hepatocytes in order to determine drug metabolism and evaluate the toxicity of xenobiotics. In this work, we established novel transgenic HepaRG cells transduced with lentiviruses encoding the reporter green fluorescent protein (GFP) transcriptionally regulated by promoter sequences of cytochromes P450 (CYP) 1A1/2, 2B6 and 3A4 genes. Here, we demonstrated that GFP-biosensor transgenes shared similar expression patterns with the corresponding endogenous CYP genes during proliferation and differentiation in HepaRG cells. Interestingly, differentiated hepatocyte-like HepaRG cells expressed GFP at higher levels than cholangiocyte-like cells. Despite weaker inductions of GFP expression compared to the strong increases in mRNA levels of endogenous genes, we also demonstrated that the biosensor transgenes were induced by prototypical drug inducers benzo(a)pyrene and phenobarbital. In addition, we used the differentiated biosensor HepaRG cells to evidence that pesticide mancozeb triggered selective cytotoxicity of hepatocyte-like cells. Our data demonstrate that these new biosensor HepaRG cells have potential applications in the field of chemicals safety evaluation and the assessment of drug hepatotoxicity.


Assuntos
Técnicas Biossensoriais , Citocromo P-450 CYP1A1/isolamento & purificação , Citocromo P-450 CYP2B6/isolamento & purificação , Citocromo P-450 CYP3A/isolamento & purificação , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP3A/genética , Proteínas de Fluorescência Verde/genética , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Lentivirus/genética , Taxa de Depuração Metabólica , Transgenes/genética
2.
Artigo em Inglês | MEDLINE | ID: mdl-29733120

RESUMO

Ischaemia reperfusion (I/R) is associated with liver injury and impaired regeneration during partial hepatectomy (PH). The aim of this study was to investigate the effect of thymoquinone (TQ), the active compound of essential oil obtained from Nigella sativa seeds, on rat liver after PH. Male Wistar rats were divided equally into four groups (n = 6) receiving an oral administration of either vehicle solution (sham and PH groups) or TQ at 30 mg/kg (TQ and TQ + PH groups) for 10 consecutive days. Then, rats underwent PH (70%) with 60 minutes of ischaemia followed by 24 hours of reperfusion (PH and TQ + PH groups). Alanine aminotransferase (ALT) activity and histopathological damage were determined. Also, antioxidant parameters, liver regeneration index, hepatic adenosine triphosphate (ATP) content, endoplasmic reticulum (ER) stress and apoptosis were assessed. In response to PH under I/R, liver damage was significantly alleviated by TQ treatment as evidenced by the decrease in ALT activity (P < .01) and histological findings (P < .001). In parallel, TQ preconditioning increased hepatic antioxidant capacities. Moreover, TQ improved mitochondrial function (ATP, P < .05), attenuated ER stress parameters and repressed the expression of apoptotic effectors. Taken together, our results suggest that TQ preconditioning could be an effective strategy to reduce liver injury after PH under I/R. The protective effects were mediated by the increase of antioxidant capacities and the decrease of ER stress and apoptosis.

3.
FASEB J ; 29(10): 4162-73, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26116704

RESUMO

The Nod-like receptor family protein 3 (NLRP3)-inflammasome pathway is known to be activated by danger signals such as monosodium urate (MSU). We investigated the role of P2 purinergic receptors in the activation of NLRP3-inflammasome pathway after MSU treatment of primary human monocyte-derived macrophages (MDMs). After initial stimulation with a low concentration of LPS (0.1 µg/ml), a 6 h treatment with MSU crystals (250, 500, and 1000 µg/ml) induced the MDMs to release IL-1ß, IL-1α, and IL-6 in a dose-dependent manner. Moreover, the caspase 1 inhibitor Z-YVAD-FMK and the cathepsin B inhibitor CA-074Me reduced production of IL-1ß in a dose-dependent manner after LPS + MSU treatment. We used real-time reverse transcription-quantitative PCR to show that treatment with LPS and MSU (500 µg/ml) induced significantly greater expression of NLRP3 and IL-1ß than after treatment with LPS. We also found that MSU treatment induced P2X purinergic receptor 7 (P2X7R) mRNA and protein expression. Furthermore, addition of the P2X7 purinergic receptor antagonist A-740003 significantly impeded IL-1ß production and pro-IL-1ß cleavage after treatment with LPS + MSU. Remarkably, RNA silencing of P2X7R (but not P2X4R) inhibited the release of IL-1ß and other M1 macrophage cytokines (such as IL-1α, IL-6, and TNF-α) from MDMs stimulated with LPS + MSU. Taken as a whole, our results show that P2 purinergic receptors and the NLRP3 inflammasome pathway are involved in the secretion of IL-1ß from MSU-stimulated human macrophages. This pathway may constitute a novel therapeutic target for controlling the inflammatory process in several associated pathologies.


Assuntos
Proteínas de Transporte/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Transdução de Sinais , Acetamidas/farmacologia , Clorometilcetonas de Aminoácidos/farmacologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Células Cultivadas , Dipeptídeos/farmacologia , Relação Dose-Resposta a Droga , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Humanos , Immunoblotting , Interleucina-1alfa/genética , Interleucina-1alfa/metabolismo , Interleucina-1beta/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Quinolinas/farmacologia , Receptores Purinérgicos P2X7/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ácido Úrico/farmacologia
4.
Chemosphere ; 346: 140535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923018

RESUMO

The worldwide and intensive use of phytosanitary compounds results in environmental and food contamination by chemical residues. Human exposure to multiple pesticide residues is a major health issue. Considering that the liver is not only the main organ for metabolizing pesticides but also a major target of toxicities induced by xenobiotics, we studied the effects of a mixture of 7 pesticides (chlorpyrifos-ethyl, dimethoate, diazinon, iprodione, imazalil, maneb, mancozeb) often detected in food samples. Effects of the mixture was investigated using metabolically competent HepaRG cells and human hepatocytes in primary culture. We report the strong cytotoxicity of the pesticide mixture towards hepatocytes-like HepaRG cells and human hepatocytes upon acute and chronic exposures at low concentrations extrapolated from the Acceptable Daily Intake (ADI) of each compound. Unexpectedly, we demonstrated that the manganese (Mn)-containing dithiocarbamates (DTCs) maneb and mancozeb were solely responsible for the cytotoxicity induced by the mixture. The mechanism of cell death involved the induction of oxidative stress, which led to cell death by intrinsic apoptosis involving caspases 3 and 9. Importantly, this cytotoxic effect was found only in cells metabolizing these pesticides. Herein, we unveil a novel mechanism of toxicity of the Mn-containing DTCs maneb and mancozeb through their metabolization in hepatocytes generating the main metabolite ethylene thiourea (ETU) and the release of Mn leading to intracellular Mn overload and depletion in zinc (Zn). Alteration of the Mn and Zn homeostasis provokes the oxidative stress and the induction of apoptosis, which can be prevented by Zn supplementation. Our data demonstrate the hepatotoxicity of Mn-containing fungicides at very low doses and unveil their adverse effect in disrupting Mn and Zn homeostasis and triggering oxidative stress in human hepatocytes.


Assuntos
Fungicidas Industriais , Maneb , Praguicidas , Zineb , Humanos , Maneb/toxicidade , Manganês/toxicidade , Manganês/metabolismo , Praguicidas/toxicidade , Zineb/toxicidade , Fungicidas Industriais/toxicidade , Fungicidas Industriais/análise , Apoptose , Estresse Oxidativo , Zinco/metabolismo , Hepatócitos/metabolismo , Etilenos , Homeostase
5.
J Biol Chem ; 286(1): 147-59, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21044963

RESUMO

Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo.


Assuntos
Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/antagonistas & inibidores , Ciclinas/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Splicing de RNA , Proteínas de Ligação a RNA/metabolismo , Animais , Ligação Competitiva , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , RNA Mensageiro/genética , Proteínas de Ligação a RNA/antagonistas & inibidores , Fatores de Processamento de Serina-Arginina , Spliceossomos/metabolismo
6.
Lab Invest ; 92(3): 396-410, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22157718

RESUMO

Although carbon tetrachloride (CCl(4))-induced acute and chronic hepatotoxicity have been extensively studied, little is known about the very early in vivo effects of this organic solvent on oxidative stress and mitochondrial function. In this study, mice were treated with CCl(4) (1.5 ml/kg ie 2.38 g/kg) and parameters related to liver damage, lipid peroxidation, stress/defense and mitochondria were studied 3 h later. Some CCl(4)-intoxicated mice were also pretreated with the cytochrome P450 2E1 inhibitor diethyldithiocarbamate or the antioxidants Trolox C and dehydroepiandrosterone. CCl(4) induced a moderate elevation of aminotransferases, swelling of centrilobular hepatocytes, lipid peroxidation, reduction of cytochrome P4502E1 mRNA levels and a massive increase in mRNA expression of heme oxygenase-1 and heat shock protein 70. Moreover, CCl(4) intoxication induced a severe decrease of mitochondrial respiratory chain complex IV activity, mitochondrial DNA depletion and damage as well as ultrastructural alterations. Whereas DDTC totally or partially prevented all these hepatic toxic events, both antioxidants protected only against liver lipid peroxidation and mitochondrial damage. Taken together, our results suggest that lipid peroxidation is primarily implicated in CCl(4)-induced early mitochondrial injury. However, lipid peroxidation-independent mechanisms seem to be involved in CCl(4)-induced early hepatocyte swelling and changes in expression of stress/defense-related genes. Antioxidant therapy may not be an efficient strategy to block early liver damage after CCl(4) intoxication.


Assuntos
Intoxicação por Tetracloreto de Carbono/metabolismo , Hepatócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Animais , Antioxidantes/farmacologia , Tetracloreto de Carbono , Cromanos/farmacologia , Inibidores do Citocromo P-450 CYP2E1 , Desidroepiandrosterona/farmacologia , Ditiocarb/farmacologia , Masculino , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos
7.
J Pharmacol Exp Ther ; 342(3): 676-87, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22647274

RESUMO

Clinical investigations suggest that hepatotoxicity after acetaminophen (APAP) overdose could be more severe in the context of obesity and nonalcoholic fatty liver disease. The pre-existence of fat accumulation and CYP2E1 induction could be major mechanisms accounting for such hepatic susceptibility. To explore this issue, experiments were performed in obese diabetic ob/ob and db/db mice. Preliminary investigations performed in male and female wild-type, ob/ob, and db/db mice showed a selective increase in hepatic CYP2E1 activity in female db/db mice. However, liver triglycerides in these animals were significantly lower compared with ob/ob mice. Next, APAP (500 mg/kg) was administered in female wild-type, ob/ob, and db/db mice, and investigations were carried out 0.5, 2, 4, and 8 h after APAP intoxication. Liver injury 8 h after APAP intoxication was higher in db/db mice, as assessed by plasma transaminases, liver histology, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. In db/db mice, however, the extent of hepatic glutathione depletion, levels of APAP-protein adducts, c-Jun N-terminal kinase activation, changes in gene expression, and mitochondrial DNA levels were not greater compared with the other genotypes. Furthermore, in the db/db genotype plasma lactate and ß-hydroxybutyrate were not specifically altered, whereas the plasma levels of APAP-glucuronide were intermediary between wild-type and ob/ob mice. Thus, early APAP-induced hepatotoxicity was greater in db/db than ob/ob mice, despite less severe fatty liver and similar basal levels of transaminases. Hepatic CYP2E1 induction could have an important pathogenic role when APAP-induced liver injury occurs in the context of obesity and related metabolic disorders.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado/efeitos dos fármacos , Obesidade/metabolismo , Ácido 3-Hidroxibutírico/sangue , Acetaminofen/sangue , Animais , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/patologia , Citocromo P-450 CYP2E1/metabolismo , DNA Mitocondrial/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Glucuronídeos/sangue , Glutationa/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Ácido Láctico/sangue , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Obesidade/sangue , Obesidade/patologia , Sulfatos/sangue , Triglicerídeos/sangue
8.
Pharmaceutics ; 14(4)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35456637

RESUMO

In order to identify the peptides, selected from the literature, that exhibit the strongest tropism towards human hepatoma cells, cell uptake assays were performed using biotinylated synthetic peptides bound to fluorescent streptavidin or engrafted onto nanoparticles (NPs), prepared from biotin-poly(ethylene glycol)-block-poly(benzyl malate) (Biot-PEG-b-PMLABe) via streptavidin bridging. Two peptides, derived from the circumsporozoite protein of Plasmodium berghei- (CPB) and George Baker (GB) Virus A (GBVA10-9), strongly enhanced the endocytosis of both streptavidin conjugates and NPs in hepatoma cells, compared to primary human hepatocytes and non-hepatic cells. Unexpectedly, the uptake of CPB- and GBVA10-9 functionalized PEG-b-PMLABe-based NPs by hepatoma cells involved, at least in part, the peptide binding to apolipoproteins, which would promote NP's interactions with cell membrane receptors of HDL particles. In addition, CPB and GBVA10-9 peptide-streptavidin conjugates favored the uptake by hepatoma cells over that of the human macrophages, known to strongly internalize nanoparticles by phagocytosis. These two peptides are promising candidate ligands for targeting hepatocellular carcinomas.

9.
Toxicol Lett ; 346: 1-6, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33872745

RESUMO

Amanitin poisonings are among the most life-threatening mushroom poisonings, and are mainly caused by the genus Amanita. Hepatotoxicity is the hallmark of amanitins, powerful toxins contained in these mushrooms, and can require liver transplant. Among amatoxins, α-amanitin is the most studied. However, the hypothesis of a possible metabolism of amanitins is still controversial in this pathophysiology. Therefore, there is a need of clarification using cutting-edge tools allowing metabolism study. Molecular network has emerged as powerful tool allowing metabolism study through organization and representation of untargeted tandem mass spectrometry (MS/MS) data in a graphical form. The aim of this study is to investigate amanitin metabolism using molecular networking. In vivo (four positive amanitin urine samples) and in vitro (differentiated HepaRG cells supernatant incubated with α-amanitin 2 µM for 24 h) samples were extracted and analyzed by LC-HRMS/MS using a Q Exactive™ Orbitrap mass spectrometer. Using molecular networking on both in vitro and in vivo, we have demonstrated that α-amanitin does not undergo metabolism in human. Thus, we provide solid evidence that a possible production of amanitin metabolites cannot be involved in its toxicity pathways. These findings can help to settle the debate on amanitin metabolism and toxicity.


Assuntos
Alfa-Amanitina/metabolismo , Alfa-Amanitina/química , Alfa-Amanitina/urina , Amanita/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Intoxicação Alimentar por Cogumelos/urina
10.
Nanomaterials (Basel) ; 11(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918663

RESUMO

Recently, short synthetic peptides have gained interest as targeting agents in the design of site-specific nanomedicines. In this context, our work aimed at developing new tools for the diagnosis and/or therapy of hepatocellular carcinoma (HCC) by grafting the hepatotropic George Baker (GB) virus A (GBVA10-9) and Plasmodium circumsporozoite protein (CPB)-derived peptides to the biocompatible poly(benzyl malate), PMLABe. We successfully synthesized PMLABe derivatives end-functionalized with peptides GBVA10-9, CPB, and their corresponding scrambled peptides through a thiol/maleimide reaction. The corresponding nanoparticles (NPs), varying by the nature of the peptide (GBVA10-9, CPB, and their scrambled peptides) and the absence or presence of poly(ethylene glycol) were also successfully formulated using nanoprecipitation technique. NPs were further characterized by dynamic light scattering (DLS), electrophoretic light scattering (ELS) and transmission electron microscopy (TEM), highlighting a diameter lower than 150 nm, a negative surface charge, and a more or less spherical shape. Moreover, a fluorescent probe (DiD Oil) has been encapsulated during the nanoprecipitation process. Finally, preliminary in vitro internalisation assays using HepaRG hepatoma cells demonstrated that CPB peptide-functionalized PMLABe NPs were efficiently internalized by endocytosis, and that such nanoobjects may be promising drug delivery systems for the theranostics of HCC.

11.
Toxicon ; 200: 87-91, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34274377

RESUMO

The amanitins (namely α- and ß-amanitin) contained in certain mushrooms are bicyclic octapeptides that, when ingested, are responsible for potentially lethal hepatotoxicity. M101 is an extracellular hemoglobin extracted from the marine worm Arenicola marina. It has intrinsic Cu/Zn-SOD-like activity and is currently used as an oxygen carrier in organ preservation solutions. Our present results suggest that M101 might be effective in reducing amanitin-induced hepatotoxicity and may have potential for therapeutic development.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Oxigênio , Amanitinas , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Hemoglobinas , Humanos
12.
J Hepatol ; 52(4): 560-9, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20207439

RESUMO

BACKGROUND & AIMS: Liver resection includes temporal vascular inflow occlusion resulting in ischemia/reperfusion injury in the remnant liver. Here, we developed a rat model of selective lobe occlusion to isolate reperfusion stress from ischemia and to analyze its effect on liver regeneration. METHODS: Left lateral and median lobes of liver were either mobilized or subjected twice for 10min to ischemia followed by 5min reperfusion prior to resection while the regenerative lobes were only subjected to reperfusion. RESULTS: Although intermittent reperfusion stress induced higher levels of serum transaminases, analysis of cell cycle regulators revealed accelerated regenerative response compared to standard partial hepatectomy. The G0/G1 transition occurred before tissue resection, as evidenced by c-fos, junB, and IL-6 induction. Following hepatectomy, Cyclin D1 up-regulation, G1/S transition, and cell division occurred earlier than normal. Unexpectedly, liver mobilization, a component of the clamping procedure, also resulted in earlier G1/S transition. The shortened G1-phase was driven by the c-Jun N-terminal Kinase pathway and was associated with an oxidative stress response as evidenced by the expression of inducible nitric oxide synthase. CONCLUSION: Intermittent selective clamping of lobes to be resected induced reperfusion stress on remnant liver that was beneficial for liver regeneration, suggesting this procedure could be applied in clinical practice.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Regeneração Hepática/fisiologia , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/fisiopatologia , Estresse Fisiológico/fisiologia , Animais , Divisão Celular/fisiologia , Ciclina D1/genética , Fase G1/fisiologia , Expressão Gênica/fisiologia , Heme Oxigenase-1/metabolismo , Hepatectomia/métodos , Hepatócitos/citologia , Hepatócitos/metabolismo , Interleucina-6/genética , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Ratos , Ratos Sprague-Dawley , Fase de Repouso do Ciclo Celular/fisiologia , Fase S/fisiologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/fisiologia , Superóxido Dismutase/metabolismo , Instrumentos Cirúrgicos
13.
Hepatology ; 50(6): 1946-56, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19821535

RESUMO

UNLABELLED: Liver regeneration is a unique process to restore hepatic homeostasis through rapid and synchronous proliferation of differentiated hepatocytes. Previous studies have shown that hepatocyte proliferation is characterized by high expression levels of the "mitotic" cyclin-dependent kinase 1 (Cdk1) during S-phase compared to other mammalian cells. In the light of findings showing that Cdk1 compensates for the loss of Cdk2 and drives S-phase in Cdk2-deficient cells derived from Cdk2 knockout mice, we took advantage of the models of liver regeneration following partial hepatectomy and primary cultures of normal rat hepatocytes to further examine the involvement of Cdk1 during DNA replication in hepatocytes and to dissect specific cell cycle regulation in hepatocytes compared to control human foreskin fibroblasts. In hepatocytes, Cdk1 exhibited a biphasic activation pattern correlating S-phase and G(2)/M transition, bound to cyclin A or B1 and localized to the nucleus during DNA replication. Importantly, small interfering RNA (siRNA)-mediated silencing of Cdk1 led to a strong decrease in DNA synthesis without affecting centrosome duplication. Furthermore, in hepatocytes arrested by the iron chelator O-Trensox in early S-phase prior to DNA replication, Cdk1/cyclin complexes were active, while replication initiation components such as the minichromosome maintenance 7 (Mcm7) protein were loaded onto DNA. Moreover, Mcm7 expression and loading onto DNA were not modified by Cdk1 silencing. Conversely, in fibroblasts, Cdk1 expression and activation were low in S-phase and its silencing did not reduce DNA synthesis. CONCLUSION: Cdk1 is essential for DNA replication downstream formation of replication initiation complexes in hepatocytes but not in fibroblasts and, as such, our data exemplify crucial differences in the cell cycle regulation between various mammalian cell types.


Assuntos
Proteína Quinase CDC2/fisiologia , Replicação do DNA , Regeneração Hepática , Animais , Ciclo Celular , Células Cultivadas , Ciclina A/fisiologia , Ciclina B1/fisiologia , Fibroblastos/enzimologia , Hepatócitos/enzimologia , Masculino , Ratos , Ratos Sprague-Dawley
14.
Polymers (Basel) ; 12(8)2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32751402

RESUMO

Hydrophobic and amphiphilic derivatives of the biocompatible and biodegradable poly(dimethylmalic acid) (PdiMeMLA), varying by the nature of the lateral chains and the length of each block, respectively, have been synthesized by anionic ring-opening polymerization (aROP) of the corresponding monomers using an initiator/base system, which allowed for very good control over the (co)polymers' characteristics (molar masses, dispersity, nature of end-chains). Hydrophobic and core-shell nanoparticles (NPs) were then prepared by nanoprecipitation of hydrophobic homopolymers and amphiphilic block copolymers, respectively. Negatively charged NPs, showing hydrodynamic diameters (Dh) between 50 and 130 nm and narrow size distributions (0.08 < PDI < 0.22) depending on the (co)polymers nature, were obtained and characterized by dynamic light scattering (DLS), zetametry, and transmission electron microscopy (TEM). Finally, the cytotoxicity and cellular uptake of the obtained NPs were evaluated in vitro using the hepatoma HepaRG cell line. Our results showed that both cytotoxicity and cellular uptake were influenced by the nature of the (co)polymer constituting the NPs.

15.
Polymers (Basel) ; 10(11)2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30961169

RESUMO

The design of drug-loaded nanoparticles (NPs) appears to be a suitable strategy for the prolonged plasma concentration of therapeutic payloads, higher bioavailability, and the reduction of side effects compared with classical chemotherapies. In most cases, NPs are prepared from (co)polymers obtained through chemical polymerization. However, procedures have been developed to synthesize some polymers via enzymatic polymerization in the absence of chemical initiators. The aim of this work was to compare the acute in vitro cytotoxicities and cell uptake of NPs prepared from poly(benzyl malate) (PMLABe) synthesized by chemical and enzymatic polymerization. Herein, we report the synthesis and characterization of eight PMLABe-based polymers. Corresponding NPs were produced, their cytotoxicity was studied in hepatoma HepaRG cells, and their uptake by primary macrophages and HepaRG cells was measured. In vitro cell viability evidenced a mild toxicity of the NPs only at high concentrations/densities of NPs in culture media. These data did not evidence a higher biocompatibility of the NPs prepared from enzymatic polymerization, and further demonstrated that chemical polymerization and the nanoprecipitation procedure led to biocompatible PMLABe-based NPs. In contrast, NPs produced from enzymatically synthesized polymers were more efficiently internalized than NPs produced from chemically synthesized polymers. The efficient uptake, combined with low cytotoxicity, indicate that PMLABe-based NPs are suitable nanovectors for drug delivery, deserving further evaluation in vivo to target either hepatocytes or resident liver macrophages.

16.
Biomed Pharmacother ; 94: 964-973, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28810534

RESUMO

This study was undertaken to evaluate the protective effect of thymoquinone (TQ), the bioactive compound of Nigella sativa seeds, against warm ischemia-reperfusion (I/R) injury in liver. Rats were given an oral administration of a vehicle solution (sham group) or TQ at the appropriate dose (10, 20, 30 and 40mg/kg) for ten days consecutively. Following, they were subjected to 60min of partial hepatic ischemia followed by 24h of reperfusion. .Transaminase activities, histopathological changes, TNFα and antioxidant parameters were evaluated. Also, endoplasmic reticulum (ER) stress, mitochondrial damage and apoptosis were studied. In addition, ERK and P38 phosphorylation was determined by Western blot technique. We found that TQ at 30mg/kg is the effective dose to protect rat liver against I/R injury. Moreover, 30mg/kg of TQ prevented histological damages, inflammation and oxidative stress. Interestingly, it decreased the expression of ER stress parameters including GRP78, CHOP and caspase-12. In parallel, it improved mitochondrial function and attenuated the expression of apoptotic parameters. Furthermore, TQ significantly enhanced ERK and P38 phosphorylation. In conclusion, we demonstrated the potential of TQ to protect the rat liver against I/R injury through the prevention of ER stress and mitochondrial dysfunction. These effects implicate the prevention of oxidative stress.


Assuntos
Apoptose/efeitos dos fármacos , Benzoquinonas/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Isquemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/metabolismo , Isquemia/metabolismo , Fígado/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Ratos , Ratos Wistar , Reperfusão/métodos , Traumatismo por Reperfusão/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Isquemia Quente/métodos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
17.
Int J Pharm ; 513(1-2): 438-452, 2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-27640247

RESUMO

The present work reports the investigation of the biocompatibility, opsonisation and cell uptake by human primary macrophages and HepaRG cells of nanoparticles (NPs) formulated from poly(ß-malic acid)-b-poly(ß-hydroxybutyrate) (PMLA-b-PHB) and poly(ß-malic acid)-b-poly(trimethylene carbonate) (PMLA-b-PTMC) diblock copolymers, namely PMLA800-b-PHB7300, PMLA4500-b-PHB4400, PMLA2500-b-PTMC2800 and PMLA4300-b-PTMC1400. NPs derived from PMLA-b-PHB and PMLA-b-PTMC do not trigger lactate dehydrogenase release and do not activate the secretion of pro-inflammatory cytokines demonstrating the excellent biocompatibility of these copolymers derived nano-objects. Using a protein adsorption assay, we demonstrate that the binding of plasma proteins is very low for PMLA-b-PHB-based nano-objects, and higher for those prepared from PMLA-b-PTMC copolymers. Moreover, a more efficient uptake by macrophages and HepaRG cells is observed for NPs formulated from PMLA-b-PHB copolymers compared to that of PMLA-b-PTMC-based NPs. Interestingly, the uptake in HepaRG cells of NPs formulated from PMLA800-b-PHB7300 is much higher than that of NPs based on PMLA4500-b-PHB4400. In addition, the cell internalization of PMLA800-b-PHB7300 based-NPs, probably through endocytosis, is strongly increased by serum pre-coating in HepaRG cells but not in macrophages. Together, these data strongly suggest that the binding of a specific subset of plasmatic proteins onto the PMLA800-b-PHB7300-based NPs favors the HepaRG cell uptake while reducing that of macrophages.


Assuntos
Dioxanos , Hidroxibutiratos , Malatos , Nanopartículas , Poliésteres , Polímeros , Transporte Biológico , Proteínas Sanguíneas/química , Proteínas Sanguíneas/metabolismo , Carcinoma Hepatocelular , Linhagem Celular Tumoral , Citocinas/metabolismo , Dioxanos/administração & dosagem , Dioxanos/química , Dioxanos/farmacologia , Humanos , Hidroxibutiratos/administração & dosagem , Hidroxibutiratos/química , Hidroxibutiratos/farmacologia , L-Lactato Desidrogenase/metabolismo , Neoplasias Hepáticas , Macrófagos/metabolismo , Malatos/administração & dosagem , Malatos/química , Malatos/farmacologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Poliésteres/administração & dosagem , Poliésteres/química , Poliésteres/farmacologia , Polímeros/administração & dosagem , Polímeros/química , Polímeros/farmacologia , Proibitinas
18.
PLoS One ; 7(11): e50235, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23226251

RESUMO

Ischemia/reperfusion injury occurring during liver transplantation is mainly due to the generation of reactive oxygen species (ROS) upon revascularization. Thus, delivery of antioxidant enzymes might reduce the deleterious effects of ROS and improve liver graft initial function. Mangafodipir trisodium (MnDPDP), a contrast agent currently used in magnetic resonance imaging of the liver, has been shown to be endowed with powerful antioxidant properties. We hypothesized that MnDPDP could have a protective effect against liver ischemia reperfusion injury when administrated to the donor prior to harvesting. Livers from Sprague Dawley rats pretreated or not with MnDPDP were harvested and subsequently preserved for 24 h in Celsior® solution at 4°C. Organs were then perfused ex vivo for 120 min at 37°C with Krebs Henseleit solution. In MnDPDP (5 µmol/kg) group, we observed that ATP content was significantly higher at the end of the cold preservation period relative to untreated group. After reperfusion, livers from MnDPDP-treated rats showed better tissue integrity, less hepatocellular and endothelial cell injury. This was accompanied by larger amounts of bile production and higher ATP recovery as compared to untreated livers. The protective effect of MnDPDP was associated with a significant decrease of lipid peroxidation, mitochondrial damage, and apoptosis. Interestingly, MnDPDP-pretreated livers exhibited activation of Nfr2 and HIF-1α pathways resulting in a higher catalase and HO-1 activities. MnDPDP also increased total nitric oxide (NO) production which derived from higher expression of constitutive NO synthase and lower expression of inducible NO synthase. In conclusion, our results show that donor pretreatment with MnDPDP protects the rat liver graft from cold ischemia/reperfusion injury and demonstrate for the first time the potential interest of this molecule in the field of organ preservation. Since MnDPDP is safely used in liver imaging, this preservation strategy holds great promise for translation to clinical liver transplantation.


Assuntos
Antioxidantes/farmacologia , Ácido Edético/análogos & derivados , Transplante de Fígado , Fígado/efeitos dos fármacos , Soluções para Preservação de Órgãos/farmacologia , Disfunção Primária do Enxerto/prevenção & controle , Fosfato de Piridoxal/análogos & derivados , Espécies Reativas de Oxigênio/antagonistas & inibidores , Trifosfato de Adenosina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Catalase/genética , Catalase/metabolismo , Ácido Edético/farmacologia , Expressão Gênica/efeitos dos fármacos , Sobrevivência de Enxerto/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/imunologia , Masculino , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase/metabolismo , Técnicas de Cultura de Órgãos , Preservação de Órgãos , Soluções para Preservação de Órgãos/química , Disfunção Primária do Enxerto/imunologia , Disfunção Primária do Enxerto/metabolismo , Fosfato de Piridoxal/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Tolerância ao Transplante/efeitos dos fármacos
19.
Int J Hepatol ; 2012: 785786, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23119170

RESUMO

The culture liver slices are mainly used to investigate drug metabolism and xenobiotic-mediated liver injuries while apoptosis and proliferation remain unexplored in this culture model. Here, we show a transient increase in LDH release and caspase activities indicating an ischemic injury during the slicing procedure. Then, caspase activities decrease and remain low in cultured slices demonstrating a low level of apoptosis. The slicing procedure is also associated with the G0/G1 transition of hepatocytes demonstrated by the activation of stress and proliferation signalling pathways including the ERK1/2 and JNK1/2/3 MAPKinases and the transient upregulation of c-fos. The cells further progress up to mid-G1 phase as indicated by the sequential induction of c-myc and p53 mRNA levels after the slicing procedure and at 24 h of culture, respectively. The stimulation by epidermal growth factor induces the ERK1/2 phosphorylation but fails to activate expression of late G1 and S phase markers such as cyclin D1 and Cdk1 indicating that hepatocytes are arrested in mid-G1 phase of the cell cycle. However, we found that combined stimulation by the proinflammatory cytokine tumor necrosis factor α and the epidermal growth factor promotes the commitment to DNA replication as observed in vivo during the liver regeneration.

20.
Biotechnol J ; 5(3): 314-20, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20213646

RESUMO

HepaRG progenitor cells are capable of differentiating into hepatocyte-like cells that express a large set of liver-specific functions. These cells, however, only express small amounts of an important cytochrome P450, the CYP2E1, which limits their use for toxicological studies of drugs metabolized by this pathway. Our aim was to establish an efficient transfection protocol to increase CYP2E1 expression in HepaRG cells. Transfection protocols of the green fluorescent protein (GFP) reporter gene were evaluated using electroporation and cationic lipids belonging to the lipophosphonates, lipophosphoramidates and lipids derived from glycine betaine. Following optimization of the charge ratios, plasmid DNA and formulations with neutral co-lipids, the lipophosphoramidate compounds KLN47 and BSV10, allowed expression of the GFP in approximately 50% of adherent progenitor HepaRG cells, while electroporation targeted GFP expression in approximately 85% of both progenitor and differentiated cells in suspension. Transient enforced expression of active CYP2E1 was also achieved in progenitors and/or differentiated HepaRG cells using the electroporation and the lipophosphoramidate compound BSV10. Importantly, in electroporated cells, CYP2E1 expression level was correlated with a significant increase in CYP2E1-specific enzymatic activity, which opens new perspectives for this CYP-dependent drug metabolism and toxicity studies using HepaRG cells.


Assuntos
Hepatócitos/fisiologia , Transfecção/métodos , Diferenciação Celular/fisiologia , Linhagem Celular , Citocromo P-450 CYP2E1/genética , Citocromo P-450 CYP2E1/metabolismo , Eletroporação/métodos , Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Humanos , Organofosfonatos/metabolismo , Preparações Farmacêuticas/metabolismo , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA