Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Phys Chem A ; 123(42): 9149-9157, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31545607

RESUMO

A commercial fast pyrolysis probe coupled with a high-resolution tandem mass spectrometer was employed to identify the initial reactions and products of fast pyrolysis of xylobiose and xylotriose, model compounds of xylans. Fragmentation of the reducing end by loss of an ethenediol molecule via ring-opening and retro-aldol condensation was found to be the dominant pyrolysis pathway for xylobiose, and the structure of the product-ß-d-xylopyranosylglyceraldehyde-was identified by comparing collision-activated dissociation of the ionized product and an ionized authentic compound. This intermediate can undergo further decomposition via the loss of formaldehyde to form ß-d-xylopyranosylglycolaldehyde. In addition, the mechanisms of reactions leading to the loss of a water molecule or dissociation of the glycosidic linkages were explored computationally. These reactions are proposed to occur via pinacol ring contraction and/or Maccoll elimination mechanisms.

2.
J Am Chem Soc ; 140(44): 14870-14877, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30351929

RESUMO

Supported multimetallic nanoparticles (NPs) are widely used in industrial catalytic processes, where the relation between surface structure and function is well-known. However, the effect of subsurface layers on such catalysts remains mostly unstudied. Here, we demonstrate a clear subsurface effect on supported 2 nm core-shell NPs with atomically precise and high temperature stable Pt3Mn intermetallic surface measured by in situ synchrotron X-ray Diffraction, difference X-ray Absorption Spectroscopy, and Energy Dispersive X-ray Spectroscopy. The NPs with a Pt3Mn subsurface have 98% selectivity to C-H over C-C bond activation during propane dehydrogenation at 550 °C compared with 82% for core-shell NPs with a Pt subsurface. The difference is correlated with significant reduction in the heats of reactant adsorption due to the Pt3Mn intermetallic subsurface as discerned by theory as well as experiment. The findings of this work highlight the importance of subsurface for supported NP catalysts, which can be tuned via controlled intermetallic formation. Such approach is generally applicable to modifying multimetallic NPs, adding another dimension to the tunability of their catalytic performance.

3.
Nano Lett ; 17(8): 4576-4582, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28650641

RESUMO

The strength of metal-support bonding in heterogeneous catalysts determines their thermal stability, therefore, a tremendous amount of effort has been expended to understand metal-support interactions. Herein, we report the discovery of an anomalous "strong metal-support bonding" between gold nanoparticles and "nano-engineered" Fe3O4 substrates by in situ microscopy. During in situ vacuum annealing of Au-Fe3O4 dumbbell-like nanoparticles, synthesized by the epitaxial growth of nano-Fe3O4 on Au nanoparticles, the gold nanoparticles transform into the gold thin films and wet the surface of nano-Fe3O4, as the surface reduction of nano-Fe3O4 proceeds. This phenomenon results from a unique coupling of the size-and shape-dependent high surface reducibility of nano-Fe3O4 and the extremely strong adhesion between Au and the reduced Fe3O4. This strong metal-support bonding reveals the significance of controlling the metal oxide support size and morphology for optimizing metal-support bonding and ultimately for the development of improved catalysts and functional nanostructures.

4.
J Am Chem Soc ; 138(18): 6028-48, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27070199

RESUMO

The relationships among the macroscopic compositional parameters of a Cu-exchanged SSZ-13 zeolite catalyst, the types and numbers of Cu active sites, and activity for the selective catalytic reduction (SCR) of NOx with NH3 are established through experimental interrogation and computational analysis of materials across the catalyst composition space. Density functional theory, stochastic models, and experimental characterizations demonstrate that within the synthesis protocols applied here and across Si:Al ratios, the volumetric density of six-membered-rings (6MR) containing two Al (2Al sites) is consistent with a random Al siting in the SSZ-13 lattice subject to Löwenstein's rule. Further, exchanged Cu(II) ions first populate these 2Al sites before populating remaining unpaired, or 1Al, sites as Cu(II)OH. These sites are distinguished and enumerated ex situ through vibrational and X-ray absorption spectroscopies (XAS) and chemical titrations. In situ and operando XAS follow Cu oxidation state and coordination environment as a function of environmental conditions including low-temperature (473 K) SCR catalysis and are rationalized through first-principles thermodynamics and ab initio molecular dynamics. Experiment and theory together reveal that the Cu sites respond sensitively to exposure conditions, and in particular that Cu species are solvated and mobilized by NH3 under SCR conditions. While Cu sites are spectroscopically and chemically distinct away from these conditions, they exhibit similar turnover rates, apparent activation energies and apparent reaction orders at the SCR conditions, even on zeolite frameworks other than SSZ13.


Assuntos
Cobre/química , Zeolitas/química , Amônia/química , Catálise , Cátions , Hidróxidos/química , Oxirredução , Termodinâmica
5.
Inorg Chem ; 55(5): 2413-20, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26878202

RESUMO

Catalyst support materials of tetragonal ZrO2, stabilized by either La2O3 (La2O3-ZrO2) or CeO2 (CeO2-ZrO2), were synthesized under hydrothermal conditions at 200 °C with NH4OH or tetramethylammonium hydroxide as the mineralizer. From in situ synchrotron powder X-ray diffraction and small-angle X-ray scattering measurements, the calcined La2O3-ZrO2 and CeO2-ZrO2 supports were nonporous nanocrystallites that exhibited rectangular shapes with a thermal stability of up to 1000 °C in air. These supports had an average size of ∼ 10 nm and a surface area of 59-97 m(2)/g. The catalysts Pt/La2O3-ZrO2 and Pt/CeO2-ZrO2 were prepared by using atomic layer deposition with varying Pt loadings from 6.3 to 12.4 wt %. Monodispersed Pt nanoparticles of ∼ 3 nm were obtained for these catalysts. The incorporation of La2O3 and CeO2 into the t-ZrO2 structure did not affect the nature of the active sites for the Pt/ZrO2 catalysts for the water-gas shift reaction.

6.
Phys Chem Chem Phys ; 18(3): 1969-79, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26686546

RESUMO

Further understanding of the chemisorption properties towards CO and H2 on silica-supported Ru nanoparticles is crucial in order to rationalize their high activity towards methanation, Fischer Tropsch and Water Gas Shift reactions. Ru nanoparticles having the same chemisorption properties towards CO and H2 were synthesized on different silica-based supports in order to combine various analytical techniques and obtain complimentary detailed information on their structure; while silica spheres were used in order to obtain high-resolution TEM images of the Ru nanoparticles, high surface area silica-based material (SBA) allowed CO chemisorption to be monitored by (13)C NMR spectroscopy. In addition, a model of the hcp-based Ru nanoparticles observed by HR-TEM was used to predict by ab initio calculations the CO and H2 coverages on the Ru nanoparticle under different conditions of interest in catalysis. For both adsorbates we show and quantify how the adsorption properties of the nanoparticle differ from the commonly used slab models. For the case of CO we show how the top, bridge and hollow sites can be present on the Ru nanoparticle, providing a description at atomistic level in good agreement with the IR spectroscopy measurements.

7.
J Org Chem ; 80(3): 1909-14, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25562626

RESUMO

A fast-pyrolysis probe/tandem mass spectrometer combination was utilized to determine the initial fast-pyrolysis products for four different selectively (13)C-labeled cellobiose molecules. Several products are shown to result entirely from fragmentation of the reducing end of cellobiose, leaving the nonreducing end intact in these products. These findings are in disagreement with mechanisms proposed previously. Quantum chemical calculations were used to identify feasible low-energy pathways for several products. These results provide insights into the mechanisms of fast pyrolysis of cellulose.


Assuntos
Carboidratos/química , Isótopos de Carbono/química , Celobiose/química , Celulose/química , Hexoses/química , Temperatura Alta , Teoria Quântica , Espectrometria de Massas em Tandem
8.
Artigo em Inglês | MEDLINE | ID: mdl-26307712

RESUMO

A fast pyrolysis probe/linear quadrupole ion trap mass spectrometer combination was used to study the primary fast pyrolysis products (those that first leave the hot pyrolysis surface) of cellulose, cellobiose, cellotriose, cellotetraose, cellopentaose, and cellohexaose, as well as of cellobiosan, cellotriosan, and cellopentosan, at 600°C. Similar products with different branching ratios were found for the oligosaccharides and cellulose, as reported previously. However, identical products (with the exception of two) with similar branching ratios were measured for cellotriosan (and cellopentosan) and cellulose. This result demonstrates that cellotriosan is an excellent small-molecule surrogate for studies of the fast pyrolysis of cellulose and also that most fast pyrolysis products of cellulose do not originate from the reducing end. Based on several observations, the fast pyrolysis of cellulose is suggested to initiate predominantly via two competing processes: the formation of anhydro-oligosaccharides, such as cellobiosan, cellotriosan, and cellopentosan (major route), and the elimination of glycolaldehyde (or isomeric) units from the reducing end of oligosaccharides formed from cellulose during fast pyrolysis.


Assuntos
Aldeídos/química , Celulose/análise , Celulose/química , Calefação/métodos , Oligossacarídeos/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Aldeídos/análise , Biocombustíveis/análise , Oligossacarídeos/análise
9.
Angew Chem Int Ed Engl ; 53(3): 833-6, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24282107

RESUMO

Rhenium nanocrystalline particles (Re NPs), of 2 nm size, were prepared from NH4ReO4 under mild conditions in neat alcohol. The unsupported Re NPs convert secondary and benzylic alcohols to ketones and aldehydes, respectively, through catalytic acceptorless dehydrogenation (AD). The oxidant- and acceptor-free neat dehydrogenation of alcohols to obtain dihydrogen gas is a green and atom-economical process for making carbonyl compounds. Secondary aliphatic alcohols give quantitative conversion and yield. Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Re K-edge X-ray absorption near-edge structure (XANES), and X-ray absorption fine structure (EXAFS) data confirmed the characterization of the Re NPs as metallic rhenium with surface oxidation to rhenium(IV) oxide (ReO2). Isotope labeling experiments revealed a novel γ-CH activation mechanism for AD of alcohols.

10.
Angew Chem Int Ed Engl ; 53(44): 11828-33, 2014 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-25220217

RESUMO

Operando X-ray absorption experiments and density functional theory (DFT) calculations are reported that elucidate the role of copper redox chemistry in the selective catalytic reduction (SCR) of NO over Cu-exchanged SSZ-13. Catalysts prepared to contain only isolated, exchanged Cu(II) ions evidence both Cu(II) and Cu(I) ions under standard SCR conditions at 473 K. Reactant cutoff experiments show that NO and NH3 together are necessary for Cu(II) reduction to Cu(I). DFT calculations show that NO-assisted NH3 dissociation is both energetically favorable and accounts for the observed Cu(II) reduction. The calculations predict in situ generation of Brønsted sites proximal to Cu(I) upon reduction, which we quantify in separate titration experiments. Both NO and O2 are necessary for oxidation of Cu(I) to Cu(II), which DFT suggests to occur by a NO2 intermediate. Reaction of Cu-bound NO2 with proximal NH4(+) completes the catalytic cycle. N2 is produced in both reduction and oxidation half-cycles.

11.
Anal Chem ; 85(22): 10927-34, 2013 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-24098979

RESUMO

Mass spectrometric methodology was developed for the determination and manipulation of the primary products of fast pyrolysis of carbohydrates. To determine the true primary pyrolysis products, a very fast heating pyroprobe was coupled to a linear quadrupole ion trap mass spectrometer through a custom-built adaptor. A home-built flow tube that simulates pyrolysis reactor conditions was used to examine the secondary reactions of the primary products. Depending on the experiment, the pyrolysis products were either evaporated and quenched or allowed to react for a period of time. The quenched products were ionized in an atmospheric pressure chemical ionization (APCI) source infused with one of two ionization reagents, chloroform or ammonium hydroxide, to aid in ionization. During APCI in negative ion mode, chloroform produces chloride anions that are known to readily add to carbohydrates with little bias and little to no fragmentation. On the other hand, in positive ion mode APCI, ammonium hydroxide forms ammonium adducts with carbohydrates with little to no fragmentation. The latter method ionizes compounds that are not readily ionized upon negative ion mode APCI, such as furan derivatives. Six model compounds were studied to verify the ability of the ionization methods to ionize known pyrolysis products: glycolaldehyde, hydroxyacetone, furfural, 5-hydroxymethylfurfural, levoglucosan, and cellobiosan. The method was then used to examine fast pyrolysis of cellobiose. The primary fast pyrolysis products were determined to consist of only a handful of compounds that quickly polymerize to form anhydro-oligosaccharides when allowed to react at high temperatures for an extended period of time.

12.
Angew Chem Int Ed Engl ; 52(51): 13808-12, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24282166

RESUMO

Atomic layer deposition (ALD) of an alumina overcoat can stabilize a base metal catalyst (e.g., copper) for liquid-phase catalytic reactions (e.g., hydrogenation of biomass-derived furfural in alcoholic solvents or water), thereby eliminating the deactivation of conventional catalysts by sintering and leaching. This method of catalyst stabilization alleviates the need to employ precious metals (e.g., platinum) in liquid-phase catalytic processing. The alumina overcoat initially covers the catalyst surface completely. By using solid state NMR spectroscopy, X-ray diffraction, and electron microscopy, it was shown that high temperature treatment opens porosity in the overcoat by forming crystallites of γ-Al2 O3 . Infrared spectroscopic measurements and scanning tunneling microscopy studies of trimethylaluminum ALD on copper show that the remarkable stability imparted to the nanoparticles arises from selective armoring of under-coordinated copper atoms on the nanoparticle surface.

13.
J Am Chem Soc ; 134(10): 4700-8, 2012 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-22316316

RESUMO

The water-gas shift (WGS) reaction rate per total mole of Au under 7% CO, 8.5% CO(2), 22% H(2)O, and 37% H(2) at 1 atm for Au/Al(2)O(3) catalysts at 180 °C and Au/TiO(2) catalysts at 120 °C varies with the number average Au particle size (d) as d(-2.2±0.2) and d(-2.7±0.1), respectively. The use of nonporous and crystalline, model Al(2)O(3) and TiO(2) supports allowed the imaging of the active catalyst and enabled a precise determination of the Au particle size distribution and particle shape using transmission electron microscopy (TEM). Further, the apparent reaction orders and the stretching frequency of CO adsorbed on Au(0) (near 2100 cm(-1)) determined by diffuse reflectance infrared spectroscopy (DRIFTS) depend on d. Because of the changes in reaction rates, kinetics, and the CO stretching frequency with number average Au particle size, it is determined that the dominant active sites are the low coordinated corner Au sites, which are 3 and 7 times more active than the perimeter Au sites for Au/Al(2)O(3) and Au/TiO(2) catalysts, respectively, and 10 times more active for Au on TiO(2) versus Al(2)O(3). From operando Fourier transform infrared spectroscopy (FTIR) experiments, it is determined that the active Au sites are metallic in nature. In addition, Au/Al(2)O(3) catalysts have a higher apparent H(2)O order (0.63) and lower apparent activation energy (9 kJ mol(-1)) than Au/TiO(2) catalysts with apparent H(2)O order of -0.42 to -0.21 and activation energy of 45-60 kJ mol(-1) at near 120 °C. From these data, we conclude that the support directly participates by activating H(2)O molecules.

14.
Phys Chem Chem Phys ; 14(7): 2229-38, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22158950

RESUMO

We describe the use of vitreous carbon as an improved reactor material for an operando X-ray absorption spectroscopy (XAS) plug-flow reactor. These tubes significantly broaden the operating range for operando experiments. Using selective catalytic reduction (SCR) of NO(x) by NH(3) on Cu/Zeolites (SSZ-13, SAPO-34 and ZSM-5) as an example reaction, we illustrate the high-quality XAS data achievable with these reactors. The operando experiments showed that in Standard SCR conditions of 300 ppm NO, 300 ppm NH(3), 5% O(2), 5% H(2)O, 5% CO(2) and balance He at 200 °C, the Cu was a mixture of Cu(I) and Cu(II) oxidation states. XANES and EXAFS fitting found the percent of Cu(I) to be 15%, 45% and 65% for SSZ-13, SAPO-34 and ZSM-5, respectively. For Standard SCR, the catalytic rates per mole of Cu for Cu/SSZ-13 and Cu/SAPO-34 were about one third of the rate per mole of Cu on Cu/ZSM-5. Based on the apparent lack of correlation of rate with the presence of Cu(I), we propose that the reaction occurs via a redox cycle of Cu(I) and Cu(II). Cu(I) was not found in in situ SCR experiments on Cu/Zeolites under the same conditions, demonstrating a possible pitfall of in situ measurements. A Cu/SiO(2) catalyst, reduced in H(2) at 300 °C, was also used to demonstrate the reactor's operando capabilities using a bending magnet beamline. Analysis of the EXAFS data showed the Cu/SiO(2) catalyst to be in a partially reduced Cu metal-Cu(I) state. In addition to improvements in data quality, the reactors are superior in temperature, stability, strength and ease of use compared to previously proposed borosilicate glass, polyimide tubing, beryllium and capillary reactors. The solid carbon tubes are non-porous, machinable, can be operated at high pressure (tested at 25 bar), are inert, have high material purity and high X-ray transmittance.

15.
J Am Soc Mass Spectrom ; 32(10): 2546-2551, 2021 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-34463497

RESUMO

The proportional content of the phenylpropanoid monomeric units (4-hydroxyphenyl (H), guaiacyl (G), and syringyl (S)) in lignin is of paramount importance in germ plasm screening and for evaluating the results of plant breeding and genetic engineering. This content is usually determined using a tedious and slow (2 days/sample) method involving derivatization followed by reductive cleavage (DFRC) combined with GC/MS or NMR analysis. We report here a fast mass spectrometric method for the determination of the monomer content. This method is based on the fast pyrolysis of a lignin sample inside the ion source area of a linear quadrupole ion trap mass spectrometer. The evaporated pyrolysis products are promptly deprotonated via negative-ion mode atmospheric pressure chemical ionization ((-)APCI) and analyzed by the mass spectrometer to determine the monomer content. The results obtained for the wild-type and six genetic variants of poplar were consistent with those obtained by the DFRC method. However, the mass spectrometry method requires only a small amount of sample (50 µg) and the use of only small amounts of three benign chemicals, methanol, water, and ammonium hydroxide, as opposed to DFRC that requires substantially larger amounts of sample (10 mg or more) and large amounts of several hazardous chemicals. Furthermore, the mass spectrometry method is substantially faster (3 min/sample), more precise, and the data interpretation is more straightforward as only nine ions measured by the mass spectrometer are considered.

16.
J Am Chem Soc ; 132(40): 14018-20, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20853899

RESUMO

Au/TiO(2) catalysts used in the water-gas shift (WGS) reaction at 120 °C, 7% CO, 22% H(2)O, 9% CO(2), and 37% H(2) had rates up to 0.1 moles of CO converted per mole of Au per second. However, the rate per mole of Au depends strongly on the Au particle size. The use of a nonporous, model support allowed for imaging of the active catalyst and a precise determination of the gold size distribution using transmission electron microscopy (TEM) because all the gold is exposed on the surface. A physical model of Au/TiO(2) is used to show that corner atoms with fewer than seven neighboring gold atoms are the dominant active sites. The number of corner sites does not vary as particle size increases above 1 nm, giving the surprising result that the rate per gold cluster is independent of size.

17.
Langmuir ; 26(21): 16578-88, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20666498

RESUMO

The kinetics of the oxidation of NO by O(2) was studied on 1 cm diameter single crystals, Pt(111) and Pt(321), at atmospheric pressure. The surface of the (321) crystal is composed of 20% kink, 20% step, and 60% terrace atoms and simulates small 1-3 nm size Pt particles on supported catalysts, while the (111) surface simulates the most stable plane found on large, >5 nm, particles. The turnover rates (TORs), that is, rate normalized by the exposed platinum, on the two single crystals differ by less than a factor of 2 over the range of conditions studied and are also similar to the TOR on a supported catalyst with an average particle size of 9 nm. Both surfaces show a dynamic kinetic behavior as evidenced by a change in the apparent activation energy and reaction orders as a function of reaction conditions. The oxygen coverage after initial rate experiments on Pt(111) was 0.6 monolayer (ML) on average which is similar to that measured previously by in situ X-ray photoelectron spectroscopy (XPS) under similar conditions. This oxygen overlayer, which is likely controlled by the relative presence of NO and NO(2), inhibits O(2) dissociation but lowers the binding energy of reactants enough to allow the catalysis. Long-term stability studies on Pt(111) correlate catalyst deactivation with irreversibly bound oxygen on the surface at coverages over 1 ML, as measured after reaction. Ex situ Auger electron spectroscopy (AES) and XPS results suggest that the surface defect sites on Pt(321) begin to oxidize relative to atoms on the (111) plane at lower NO(2) to NO ratios.


Assuntos
Óxido Nítrico/química , Oxigênio/química , Platina/química , Cristalização , Cinética , Dióxido de Nitrogênio/síntese química , Dióxido de Nitrogênio/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície
18.
Langmuir ; 26(21): 16615-24, 2010 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-20828142

RESUMO

The reaction kinetics of hydrodechlorination (HDCl) for a series of CH(4−x)Cl(x) (x = 1−4) compounds were measured on a Pd/carbon catalyst. The rate of HDCl correlated with the C−Cl bond energy, suggesting scission of this bond in the molecularly adsorbed molecule is rate-determining. The measured reaction kinetics of the CH(4−x)Cl(x) compounds support a previously proposed Langmuir−Hinshelwood type reaction mechanism. Kinetic and isotope exchange experiments demonstrated the following: gas phase H2 and HCl are in equilibrium with surface H and Cl; adsorbed Cl is the most abundant surface intermediate; and irreversible scission of the first C−Cl bond is rate-determining. The overall hydrodechlorination reaction rate can be written as kK(R−Cl)[R−Cl]/(1 + K(HCl)[HCl]/K(H2)(1/2)[H2](1/2)). The activation energy of the rate-determining step was related linearly to the dissociation energy of the first C−Cl bond broken in a Brönsted−Evans−Polanyi relationship. This behavior is in agreement with a previous study of CF(3)CF(3−x)Cl(x) compounds. During the reaction of CH3Cl, CH2Cl2, and CHCl3 with deuterium, H−D exchange occurred in only 2%, 6%, and 9% of products, respectively. The increasing H−D exchange with Cl content suggests the steps which determine selectivity in these multipath, parallel reactions. The density functional theory (DFT)-calculated activation energies for the dissociation of the first C−Cl bond in the family of chlorinated methane compounds are in good agreement with the values extracted from kinetic modeling, suggesting that parameters estimated from DFT calculations may be used to estimate the reactivity of a particular chlorinated compound within a family of chlorocarbons.


Assuntos
Hidrocarbonetos Clorados/química , Paládio/química , Adsorção , Hidrocarbonetos Clorados/síntese química , Cinética , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de Superfície
19.
Phys Chem Chem Phys ; 12(21): 5678-93, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20442915

RESUMO

The turn-over-rate (TOR) for the water gas shift (WGS) reaction at 200 degrees C, 7% CO, 9% CO(2), 22% H(2)O, 37% H(2) and balance Ar, of 1.4 nm Au/Al(2)O(3) is approximately 20 times higher than that of 1.6 nm Pt/Al(2)O(3). Operando EXAFS experiments at both the Au and Pt L(3) edges reveal that under reaction conditions, the catalysts are fully metallic. In the absence of adsorbates, the metal-metal bond distances of Pt and Au catalysts are 0.07 A and 0.13 A smaller than those of bulk Pt and Au foils, respectively. Adsorption of H(2) or CO on the Pt catalysts leads to significantly longer Pt-Pt bond distances; while there is little change in Au-Au bond distance with adsorbates. Adsorption of CO, H(2) and H(2)O leads to changes in the XANES spectra that can be used to determine the surface coverage of each adsorbate under reaction conditions. During WGS, the coverage of CO, H(2)O, and H(2) are obtained by the linear combination fitting of the difference XANES, or DeltaXANES, spectra. Pt catalysts adsorb CO, H(2), and H(2)O more strongly than the Au, in agreement with the lower CO reaction order and higher reaction temperatures.

20.
J Phys Chem Lett ; 11(13): 5029-5036, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32496798

RESUMO

NOx selective catalytic reduction (SCR) with NH3 on Cu-zeolites is a commercial emissions control technology for diesel and lean-burn engines. Mitigating low-temperature emissions remains an outstanding challenge, motivating an improved understanding of the reaction mechanism, active site requirements, and rate-determining processes at low temperatures (<523 K). In this Perspective, we discuss how operando spectroscopy provides crucial information about how the structures, coordination environments, and oxidation states of Cu active sites depend on reaction conditions and sample composition; when combined with kinetic measurements, such operando data provide insights into the Cu site and spatial density requirements for reduction and oxidation steps relevant to the Cu(II)/Cu(I) SCR redox cycle. Isolated Cu ions coordinated to zeolite oxygen atoms ex situ become coordinated to NH3 in situ and dynamically interconvert between mononuclear and binuclear NH3-solvated Cu complexes to catalyze SCR turnovers. We conclude with future research directions that can benefit from combining quantitative kinetic measurements with operando spectroscopy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA