Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 54(8): 1772-1787.e9, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34289378

RESUMO

As substantial constituents of the multiple myeloma (MM) microenvironment, pro-inflammatory macrophages have emerged as key promoters of disease progression, bone destruction, and immune impairment. We identify beta-2-microglobulin (ß2m) as a driver in initiating inflammation in myeloma-associated macrophages (MAMs). Lysosomal accumulation of phagocytosed ß2m promotes ß2m amyloid aggregation in MAMs, resulting in lysosomal rupture and ultimately production of active interleukin-1ß (IL-1ß) and IL-18. This process depends on activation of the NLRP3 inflammasome after ß2m accumulation, as macrophages from NLRP3-deficient mice lack efficient ß2m-induced IL-1ß production. Moreover, depletion or silencing of ß2m in MM cells abrogates inflammasome activation in a murine MM model. Finally, we demonstrate that disruption of NLRP3 or IL-18 diminishes tumor growth and osteolytic bone destruction normally promoted by ß2m-induced inflammasome signaling. Our results provide mechanistic evidence for ß2m's role as an NLRP3 inflammasome activator during MM pathogenesis. Moreover, inhibition of NLRP3 represents a potential therapeutic approach in MM.


Assuntos
Amiloide/metabolismo , Mieloma Múltiplo/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Macrófagos Associados a Tumor/metabolismo , Microglobulina beta-2/metabolismo , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Lisossomos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Fagocitose/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia , Microglobulina beta-2/genética
2.
Proc Natl Acad Sci U S A ; 119(26): e2203181119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737839

RESUMO

Protein aggregation into amyloid fibrils is the archetype of aberrant biomolecular self-assembly processes, with more than 50 associated diseases that are mostly uncurable. Understanding aggregation mechanisms is thus of fundamental importance and goes in parallel with the structural characterization of the transient oligomers formed during the process. Oligomers have been proven elusive to high-resolution structural techniques, while the large sizes and long time scales, typical of aggregation processes, have limited the use of computational methods to date. To surmount these limitations, we here present multi-eGO, an atomistic, hybrid structure-based model which, leveraging the knowledge of monomers conformational dynamics and of fibril structures, efficiently captures the essential structural and kinetics aspects of protein aggregation. Multi-eGO molecular dynamics simulations can describe the aggregation kinetics of thousands of monomers. The concentration dependence of the simulated kinetics, as well as the structural features of the resulting fibrils, are in qualitative agreement with in vitro experiments carried out on an amyloidogenic peptide from Transthyretin, a protein responsible for one of the most common cardiac amyloidoses. Multi-eGO simulations allow the formation of primary nuclei in a sea of transient lower-order oligomers to be observed over time and at atomic resolution, following their growth and the subsequent secondary nucleation events, until the maturation of multiple fibrils is achieved. Multi-eGO, combined with the many experimental techniques deployed to study protein aggregation, can provide the structural basis needed to advance the design of molecules targeting amyloidogenic diseases.


Assuntos
Amiloide , Agregados Proteicos , Amiloide/química , Simulação por Computador , Cinética , Simulação de Dinâmica Molecular
3.
Vet Pathol ; : 3009858241257903, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864284

RESUMO

AA-amyloidosis is frequent in shelter cats, and chronic kidney disease is the foremost cause of death. The aims were to describe kidney laboratory and microscopic findings in shelter cats with AA-amyloidosis. Cats were included if kidney specimens were collected post-mortem and laboratory data were available within 6 months before death. Renal lesions were evaluated with optical and electron microscopy. Mass spectrometry was used to characterize amyloid. Nine domestic short-hair cats were included; 4 females and 5 males with a median age of 8 years (range = 2-13). All cats had blood analyses and urinalyses available. Serum creatinine concentrations were increased in 6 cats and symmetric dimethylarginine was increased in all of the cats. All of the cats had proteinuria. Eight of 9 cats had amyloid in the medulla, and 9 had amyloid in the cortex (glomeruli). All cats had amyloid in the interstitium. Six cats had concurrent interstitial nephritis and 1 had membranoproliferative glomerulonephritis. All cats had extrarenal amyloid deposits. Amyloid was AA in each case. In conclusion, renal deposition of amyloid occurs in both cortex and medulla in shelter cats and is associated with azotemia and proteinuria. Renal involvement of systemic AA-amyloidosis should be considered in shelter cats with chronic kidney disease. The cat represents a natural model of renal AA-amyloidosis.

4.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894777

RESUMO

Brugada Syndrome (BrS) is a rare inherited cardiac arrhythmia causing potentially fatal ventricular tachycardia or fibrillation, mainly occurring during rest or sleep in young individuals without heart structural issues. It increases the risk of sudden cardiac death, and its characteristic feature is an abnormal ST segment elevation on the ECG. While BrS has diverse genetic origins, a subset of cases can be conducted to mutations in the SCN5A gene, which encodes for the Nav1.5 sodium channel. Our study focused on three novel SCN5A mutations (p.A344S, p.N347K, and p.D349N) found in unrelated BrS families. Using patch clamp experiments, we found that these mutations disrupted sodium currents: p.A344S reduced current density, while p.N347K and p.D349N completely abolished it, leading to altered voltage dependence and inactivation kinetics when co-expressed with normal channels. We also explored the effects of mexiletine treatment, which can modulate ion channel function. Interestingly, the p.N347K and p.D349N mutations responded well to the treatment, rescuing the current density, while p.A344S showed a limited response. Structural analysis revealed these mutations were positioned in key regions of the channel, impacting its stability and function. This research deepens our understanding of BrS by uncovering the complex relationship between genetic mutations, ion channel behavior, and potential therapeutic interventions.


Assuntos
Síndrome de Brugada , Humanos , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas , Mutação
5.
Biochem Biophys Res Commun ; 616: 70-75, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35640488

RESUMO

The Reactive intermediate deiminase (Rid) protein family is a group of enzymes widely distributed in all Kingdoms of Life. RidA is one of the eight known Rid subfamilies, and its members act by preventing the accumulation of 2-aminoacrylate, a highly reactive enamine generated during the metabolism of some amino acids, by hydrolyzing the 2-iminopyruvate tautomer to pyruvate and ammonia. RidA members are homotrimers exhibiting a remarkable thermal stability. Recently, a novel subclass of RidA was identified in teleosts, which differs for stability and substrate specificity from the canonical RidA. In this study we structurally and functionally characterized RidA from Apis mellifera (AmRidA) as the first example of an invertebrate RidA to assess its belonging to the canonical RidA group, and to further correlate structural and functional features of this novel enzyme class. Circular dichroism revealed a spectrum typical of the RidA proteins and the high thermal stability. AmRidA exhibits the 2-imino acid hydrolase activity typical of RidA family members with a substrate specificity similar to that of the canonical RidA. The crystal structure confirmed the homotrimeric assembly and the presence of the typical structural features of RidA proteins, such as the proposed substrate recognition loop, and the ß-sheets ß1-ß9 and ß1-ß2. In conclusion, our data define AmRidA as a canonical member of the well-conserved RidA family and further clarify the diagnostic structural features of this class of enzymes.


Assuntos
Iminas , Scrapie , Aminoácidos , Aminoidrolases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Abelhas , Ovinos
6.
Cell Mol Life Sci ; 78(19-20): 6409-6430, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34405255

RESUMO

Neuroserpin is a serine protease inhibitor identified in a search for proteins implicated in neuronal axon growth and synapse formation. Since its discovery over 30 years ago, it has been the focus of active research. Many efforts have concentrated in elucidating its neuroprotective role in brain ischemic lesions, the structural bases of neuroserpin conformational change and the effects of neuroserpin polymers that underlie the neurodegenerative disease FENIB (familial encephalopathy with neuroserpin inclusion bodies), but the investigation of the physiological roles of neuroserpin has increased over the last years. In this review, we present an updated and critical revision of the current literature dealing with neuroserpin, covering all aspects of research including the expression and physiological roles of neuroserpin, both inside and outside the nervous system; its inhibitory and non-inhibitory mechanisms of action; the molecular structure of the monomeric and polymeric conformations of neuroserpin, including a detailed description of the polymerisation mechanism; and the involvement of neuroserpin in human disease, with particular emphasis on FENIB. Finally, we briefly discuss the identification by genome-wide screening of novel neuroserpin variants and their possible pathogenicity.


Assuntos
Neuropeptídeos/metabolismo , Serpinas/metabolismo , Animais , Axônios/metabolismo , Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Humanos , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Polimerização , Neuroserpina
7.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055136

RESUMO

Light chain amyloidosis (AL) is caused by the aberrant overproduction of immunoglobulin light chains (LCs). The resulting abnormally high LC concentrations in blood lead to deposit formation in the heart and other target organs. Organ damage is caused not only by the accumulation of bulky amyloid deposits, but extensive clinical data indicate that circulating soluble LCs also exert cardiotoxic effects. The nematode C. elegans has been validated to recapitulate LC soluble toxicity in vivo, and in such a model a role for copper ions in increasing LC soluble toxicity has been reported. Here, we applied microscale thermophoresis, isothermal calorimetry and thermal melting to demonstrate the specific binding of Cu2+ to the variable domain of amyloidogenic H7 with a sub-micromolar affinity. Histidine residues present in the LC sequence are not involved in the binding, and yet their mutation to Ala reduces the soluble toxicity of H7. Copper ions bind to and destabilize the variable domains and induce a limited stabilization in this domain. In summary, the data reported here, elucidate the biochemical bases of the Cu2+-induced toxicity; moreover, they also show that copper binding is just one of the several biochemical traits contributing to LC soluble in vivo toxicity.


Assuntos
Cobre/metabolismo , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Substituição de Aminoácidos , Animais , Caenorhabditis elegans , Calorimetria , Modelos Animais de Doenças , Histidina/metabolismo , Humanos , Cadeias Leves de Imunoglobulina/toxicidade , Modelos Moleculares , Conformação Proteica , Espécies Reativas de Oxigênio/metabolismo
8.
J Biol Chem ; 295(49): 16572-16584, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-32952127

RESUMO

Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.


Assuntos
Amiloide/química , Amiloidose de Cadeia Leve de Imunoglobulina/patologia , Miocárdio/metabolismo , Sequência de Aminoácidos , Amiloide/metabolismo , Cromatografia Líquida de Alta Pressão , Eletroforese em Gel Bidimensional , Humanos , Cadeias Leves de Imunoglobulina/química , Cadeias Leves de Imunoglobulina/metabolismo , Amiloidose de Cadeia Leve de Imunoglobulina/metabolismo , Peptídeos/análise , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteólise , Espectrometria de Massas em Tandem
9.
Biophys J ; 119(5): 978-988, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758421

RESUMO

A growing body of evidences has established that in many cases proteins may preserve most of their function and flexibility in a crystalline environment, and several techniques are today capable to characterize molecular properties of proteins in tightly packed lattices. Intriguingly, in the case of amyloidogenic precursors, the presence of transiently populated states (hidden to conventional crystallographic studies) can be correlated to the pathological fate of the native fold; the low fold stability of the native state is a hallmark of aggregation propensity. It remains unclear, however, to which extent biophysical properties of proteins such as the presence of transient conformations or protein stability characterized in crystallo reflect the protein behavior that is more commonly studied in solution. Here, we address this question by investigating some biophysical properties of a prototypical amyloidogenic system, ß2-microglobulin in solution and in microcrystalline state. By combining NMR chemical shifts with molecular dynamics simulations, we confirmed that conformational dynamics of ß2-microglobulin native state in the crystal lattice is in keeping with what observed in solution. A comparative study of protein stability in solution and in crystallo is then carried out, monitoring the change in protein secondary structure at increasing temperature by Fourier transform infrared spectroscopy. The increased structural order of the crystalline state contributes to provide better resolved spectral components compared to those collected in solution and crucially, the crystalline samples display thermal stabilities in good agreement with the trend observed in solution. Overall, this work shows that protein stability and occurrence of pathological hidden states in crystals parallel their solution counterpart, confirming the interest of crystals as a platform for the biophysical characterization of processes such as unfolding and aggregation.


Assuntos
Simulação de Dinâmica Molecular , Microglobulina beta-2 , Espectroscopia de Ressonância Magnética , Conformação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína
10.
Int J Mol Sci ; 21(9)2020 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-32375228

RESUMO

Neuroserpin (NS) is a member of the serine protease inhibitors superfamily. Specific point mutations are responsible for its accumulation in the endoplasmic reticulum of neurons that leads to a pathological condition named familial encephalopathy with neuroserpin inclusion bodies (FENIB). Wild-type NS presents two N-glycosylation chains and does not form polymers in vivo, while non-glycosylated NS causes aberrant polymer accumulation in cell models. To date, all in vitro studies have been conducted on bacterially expressed NS, de facto neglecting the role of glycosylation in the biochemical properties of NS. Here, we report the expression and purification of human glycosylated NS (gNS) using a novel eukaryotic expression system, LEXSY. Our results confirm the correct N-glycosylation of wild-type gNS. The fold and stability of gNS are not altered compared to bacterially expressed NS, as demonstrated by the circular dichroism and intrinsic tryptophan fluorescence assays. Intriguingly, gNS displays a remarkably reduced polymerisation propensity compared to non-glycosylated NS, in keeping with what was previously observed for wild-type NS in vivo and in cell models. Thus, our results support the relevance of gNS as a new in vitro tool to study the molecular bases of FENIB.


Assuntos
Neuropeptídeos/metabolismo , Serpinas/metabolismo , Linhagem Celular , Glicosilação , Humanos , Neuropeptídeos/química , Dobramento de Proteína , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Serpinas/química , Neuroserpina
11.
Int J Mol Sci ; 20(2)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669253

RESUMO

Beta-2 microglobulin (ß2m) is a protein responsible for a pathologic condition, known as dialysis-related amyloidosis (DRA), caused by its aggregation and subsequent amyloid formation. A naturally occurring mutation of ß2m, D76N, presents a higher amyloidogenic propensity compared to the wild type counterpart. Since the three-dimensional structure of the protein is essentially unaffected by the mutation, the increased aggregation propensity of D76N has been generally ascribed to its lower thermodynamic stability and increased dynamics. In this study we compare the equilibrium unfolding and the aggregation propensity of wild type ß2m and D76N variant at different experimental conditions. Our data revealed a surprising effect of the D76N mutation in the residual structure of the denatured state, which appears less compact than that of the wild type protein. A careful investigation of the structural malleability of the denatured state of wild type ß2m and D76N pinpoint a clear role of the denatured state in triggering the amyloidogenic propensity of the protein. The experimental results are discussed in the light of the previous work on ß2m and its role in disease.


Assuntos
Substituição de Aminoácidos , Mutação , Agregados Proteicos , Agregação Patológica de Proteínas , Microglobulina beta-2/genética , Microglobulina beta-2/metabolismo , Alelos , Concentração de Íons de Hidrogênio , Concentração Osmolar , Desnaturação Proteica , Desdobramento de Proteína , Proteínas Recombinantes , Microglobulina beta-2/química
12.
Cell Mol Life Sci ; 74(19): 3577-3598, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28478513

RESUMO

Transthyretin (TTR) is an extracellular protein able to deposit into well-defined protein aggregates called amyloid, in pathological conditions known as senile systemic amyloidosis, familial amyloid polyneuropathy, familial amyloid cardiomyopathy and leptomeningeal amyloidosis. At least three distinct partially folded states have been described for TTR, including the widely studied amyloidogenic state at mildly acidic pH. Here, we have used fluorescence resonance energy transfer (FRET) experiments in a monomeric variant of TTR (M-TTR) and in its W41F and W79F mutants, taking advantage of the presence of a unique, solvent-exposed, cysteine residue at position 10, that we have labelled with a coumarin derivative (DACM, acceptor), and of the two natural tryptophan residues at positions 41 and 79 (donors). Trp41 is located in an ideal position as it is one of the residues of ß-strand C, whose degree of unfolding is debated. We found that the amyloidogenic state at low pH has the same FRET efficiency as the folded state at neutral pH in both M-TTR and W79F-M-TTR, indicating an unmodified Cys10-Trp41 distance. The partially folded state populated at low denaturant concentrations also has a similar FRET efficiency, but other spectroscopic probes indicate that it is distinct from the amyloidogenic state at acidic pH. By contrast, the off-pathway state accumulating transiently during refolding has a higher FRET efficiency, indicating non-native interactions that reduce the Cys10-Trp41 spatial distance, revealing a third distinct conformational state. Overall, our results clarify a negligible degree of unfolding of ß-strand C in the formation of the amyloidogenic state and establish the concept that TTR is a highly plastic protein able to populate at least three distinct conformational states.


Assuntos
Amiloide/química , Pré-Albumina/química , Agregados Proteicos , Dobramento de Proteína , Amiloide/genética , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Simulação de Dinâmica Molecular , Mutação Puntual , Pré-Albumina/genética , Conformação Proteica , Conformação Proteica em Folha beta
14.
Biochim Biophys Acta ; 1854(2): 110-7, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450507

RESUMO

Neuroserpin (NS) is a serine protease inhibitor (SERPIN) involved in different neurological pathologies, including the Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB), related to the aberrant polymerization of NS mutants. Here we present an in vitro and in silico characterization of native neuroserpin and its dysfunctional conformation isoforms: the proteolytically cleaved conformer, the inactive latent conformer, and the polymeric species. Based on circular dichroism and fluorescence spectroscopy, we present an experimental validation of the latent model and highlight the main structural features of the different conformers. In particular, emission spectra of aromatic residues yield distinct conformational fingerprints, that provide a novel and simple spectroscopic tool for selecting serpin conformers in vitro. Based on the structural relationship between cleaved and latent serpins, we propose a structural model for latent NS, for which an experimental crystallographic structure is lacking. Molecular Dynamics simulations suggest that NS conformational stability and flexibility arise from a spatial distribution of intramolecular salt-bridges and hydrogen bonds.


Assuntos
Epilepsias Mioclônicas/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Neuropeptídeos/química , Conformação Proteica , Inibidores de Serina Proteinase/química , Serpinas/química , Dicroísmo Circular , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Transtornos Heredodegenerativos do Sistema Nervoso/genética , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Neuropeptídeos/metabolismo , Dobramento de Proteína , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Estrutura Secundária de Proteína , Inibidores de Serina Proteinase/metabolismo , Serpinas/metabolismo , Neuroserpina
15.
Biochem Biophys Res Commun ; 479(1): 48-53, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27613098

RESUMO

Microtubule (MT) dynamic behaviour is an attractive drug target for chemotherapy, whose regulation by MT-stabilizing and destabilizing agents has been fruitfully applied in treating several types of cancers. MT-stabilizing agents are also emerging as potential remedies for neurodegenerative conditions, such as Alzheimer's and Parkinson's disease, although single-target drugs are not expected to fully cure these complex pathologies. Drug combination often displays enhanced efficacy with respect to mono-therapies. In particular, MT-targeting bivalent compounds (MTBCs) represent a promising class of molecules; however, surprisingly, the majority of MTBCs reported so far exhibit equal if not less efficacy than their building monomers. In order to shed light on MTBCs poor performance, we characterised through a set of complementary approaches thiocolchine (TH) and two bivalent TH-homodimers as prototype molecules. First, the binding affinities of these three molecules were assessed, then we obtained the crystallographic structure of a tubulin-TH complex. The binding affinities were interpreted in light of structural data and of molecular dynamics simulations. Finally, their effects on MT cytoskeleton and cell survival were validated on HeLa cells. The ensemble of these data provides chemical and structural considerations on how a successful rational design of MTBCs should be conceived.


Assuntos
Antineoplásicos/metabolismo , Desenho de Fármacos , Microtúbulos/metabolismo , Moduladores de Tubulina/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacologia , Ligação Competitiva , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Depsipeptídeos/química , Depsipeptídeos/metabolismo , Depsipeptídeos/farmacologia , Dimerização , Células HeLa , Humanos , Microscopia de Fluorescência , Microtúbulos/química , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Domínios Proteicos , Tubulina (Proteína)/química , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/farmacologia
16.
J Biol Chem ; 289(6): 3318-27, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24338476

RESUMO

To form extracellular aggregates, amyloidogenic proteins bypass the intracellular quality control, which normally targets unfolded/aggregated polypeptides. Human D76N ß2-microglobulin (ß2m) variant is the prototype of unstable and amyloidogenic protein that forms abundant extracellular fibrillar deposits. Here we focus on the role of the class I major histocompatibility complex (MHCI) in the intracellular stabilization of D76N ß2m. Using biophysical and structural approaches, we show that the MHCI containing D76N ß2m (MHCI76) displays stability, dissociation patterns, and crystal structure comparable with those of the MHCI with wild type ß2m. Conversely, limited proteolysis experiments show a reduced protease susceptibility for D76N ß2m within the MHCI76 as compared with the free variant, suggesting that the MHCI has a chaperone-like activity in preventing D76N ß2m degradation within the cell. Accordingly, D76N ß2m is normally assembled in the MHCI and circulates as free plasma species in a transgenic mouse model.


Assuntos
Amiloide/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Mutação de Sentido Incorreto , Microglobulina beta-2/metabolismo , Substituição de Aminoácidos , Amiloide/genética , Animais , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Camundongos , Camundongos Transgênicos , Microglobulina beta-2/genética
17.
N Engl J Med ; 366(24): 2276-83, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22693999

RESUMO

We describe a kindred with slowly progressive gastrointestinal symptoms and autonomic neuropathy caused by autosomal dominant, hereditary systemic amyloidosis. The amyloid consists of Asp76Asn variant ß(2)-microglobulin. Unlike patients with dialysis-related amyloidosis caused by sustained high plasma concentrations of wild-type ß(2)-microglobulin, the affected members of this kindred had normal renal function and normal circulating ß(2)-microglobulin values. The Asp76Asn ß(2)-microglobulin variant was thermodynamically unstable and remarkably fibrillogenic in vitro under physiological conditions. Previous studies of ß(2)-microglobulin aggregation have not shown such amyloidogenicity for single-residue substitutions. Comprehensive biophysical characterization of the ß(2)-microglobulin variant, including its 1.40-Å, three-dimensional structure, should allow further elucidation of fibrillogenesis and protein misfolding.


Assuntos
Amiloidose Familiar/genética , Microglobulina beta-2/genética , Amiloidose Familiar/complicações , Diarreia/etiologia , Feminino , Genes Dominantes , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Estrutura Quaternária de Proteína , Proteoma/genética , Síndrome de Sjogren/complicações , Síndrome de Sjogren/genética , Microglobulina beta-2/química
18.
J Am Chem Soc ; 136(35): 12489-97, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25102442

RESUMO

Using a set of six (1)H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5-30 kDa proteins. The approach relies on perdeuteration, amide (2)H/(1)H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary (13)C/(15)N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.


Assuntos
Hidrogênio/análise , Ressonância Magnética Nuclear Biomolecular/métodos , Prótons , Isótopos de Carbono/análise , Medição da Troca de Deutério , Modelos Moleculares , Isótopos de Nitrogênio/análise , Proteínas/química
19.
Protein Sci ; 33(6): e5036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38801230

RESUMO

Reactive intermediate deaminase A (RidA) is a highly conserved enzyme that catalyzes the hydrolysis of 2-imino acids to the corresponding 2-keto acids and ammonia. RidA thus prevents the accumulation of such potentially harmful compounds in the cell, as exemplified by its role in the degradation of 2-aminoacrylate, formed during the metabolism of cysteine and serine, catalyzing the conversion of its stable 2-iminopyruvate tautomer into pyruvate. Capra hircus (goat) RidA (ChRidA) was the first mammalian RidA to be isolated and described. It has the typical homotrimeric fold of the Rid superfamily, characterized by remarkably high thermal stability, with three active sites located at the interface between adjacent subunits. ChRidA exhibits a broad substrate specificity with a preference for 2-iminopyruvate and other 2-imino acids derived from amino acids with non-polar non-bulky side chains. Here we report a biophysical and biochemical characterization of eight ChRidA variants obtained by site-directed mutagenesis to gain insight into the role of specific residues in protein stability and catalytic activity. Each mutant was produced in Escherichia coli cells, purified and characterized in terms of quaternary structure, thermal stability and substrate specificity. The results are rationalized in the context of the high-resolution structures obtained by x-ray crystallography.


Assuntos
Estabilidade Enzimática , Mutagênese Sítio-Dirigida , Animais , Especificidade por Substrato , Modelos Moleculares , Domínio Catalítico
20.
J Vet Intern Med ; 38(1): 205-215, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37991136

RESUMO

BACKGROUND: Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES: Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS: Twenty-nine shelter cats. METHODS: Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS: Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE: Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.


Assuntos
Amiloidose , Doenças do Gato , Gatos , Animais , Creatinina , Estudos de Casos e Controles , Rim/patologia , Amiloidose/complicações , Amiloidose/veterinária , Proteinúria/veterinária , Proteinúria/metabolismo , Proteína Amiloide A Sérica/metabolismo , Doenças do Gato/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA