Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 45(2): 333-45, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27533014

RESUMO

Many pathogens, including Plasmodium spp., exploit the interaction of programmed death-1 (PD-1) with PD-1-ligand-1 (PD-L1) to "deactivate" T cell functions, but the role of PD-L2 remains unclear. We studied malarial infections to understand the contribution of PD-L2 to immunity. Here we have shown that higher PD-L2 expression on blood dendritic cells, from Plasmodium falciparum-infected individuals, correlated with lower parasitemia. Mechanistic studies in mice showed that PD-L2 was indispensable for establishing effective CD4(+) T cell immunity against malaria, because it not only inhibited PD-L1 to PD-1 activity but also increased CD3 and inducible co-stimulator (ICOS) expression on T cells. Importantly, administration of soluble multimeric PD-L2 to mice with lethal malaria was sufficient to dramatically improve immunity and survival. These studies show immuno-regulation by PD-L2, which has the potential to be translated into an effective treatment for malaria and other diseases where T cell immunity is ineffective or short-lived due to PD-1-mediated signaling.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Proteína 2 Ligante de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Adamantano/análogos & derivados , Adamantano/uso terapêutico , Adulto , Animais , Antimaláricos/uso terapêutico , Antígeno B7-H1/genética , Células Cultivadas , Ensaios Clínicos como Assunto , Células Dendríticas/parasitologia , Feminino , Humanos , Imunidade Celular , Ativação Linfocitária , Malária Falciparum/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Parasitemia/imunologia , Peróxidos/uso terapêutico , Proteína 2 Ligante de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/genética , Pirimidinas/uso terapêutico , Triazóis/uso terapêutico , Adulto Jovem
2.
Br J Cancer ; 130(7): 1196-1205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38287178

RESUMO

BACKGROUND: 5-Fluorouracil (5-FU) remains a core component of systemic therapy for colorectal cancer (CRC). However, response rates remain low, and development of therapy resistance is a primary issue. Combinatorial strategies employing a second agent to augment the therapeutic effect of chemotherapy is predicted to reduce the incidence of treatment resistance and increase the durability of response to therapy. METHODS: Here, we employed quantitative proteomics approaches to identify novel druggable proteins and molecular pathways that are deregulated in response to 5-FU, which might serve as targets to improve sensitivity to chemotherapy. Drug combinations were evaluated using 2D and 3D CRC cell line models and an ex vivo culture model of a patient-derived tumour. RESULTS: Quantitative proteomics identified upregulation of the mitosis-associated protein Aurora B (AURKB), within a network of upregulated proteins, in response to a 24 h 5-FU treatment. In CRC cell lines, AURKB inhibition with the dihydrogen phosphate prodrug AZD1152, markedly improved the potency of 5-FU in 2D and 3D in vitro CRC models. Sequential treatment with 5-FU then AZD1152 also enhanced the response of a patient-derived CRC cells to 5-FU in ex vivo cultures. CONCLUSIONS: AURKB inhibition may be a rational approach to augment the effectiveness of 5-FU chemotherapy in CRC.


Assuntos
Neoplasias Colorretais , Fluoruracila , Organofosfatos , Quinazolinas , Humanos , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Aurora Quinase B/farmacologia , Aurora Quinase B/uso terapêutico , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos
3.
Immunology ; 168(3): 403-419, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36107637

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is known to present with pulmonary and extra-pulmonary organ complications. In comparison with the 2009 pandemic (pH1N1), SARS-CoV-2 infection is likely to lead to more severe disease, with multi-organ effects, including cardiovascular disease. SARS-CoV-2 has been associated with acute and long-term cardiovascular disease, but the molecular changes that govern this remain unknown. In this study, we investigated the host transcriptome landscape of cardiac tissues collected at rapid autopsy from seven SARS-CoV-2, two pH1N1, and six control patients using targeted spatial transcriptomics approaches. Although SARS-CoV-2 was not detected in cardiac tissue, host transcriptomics showed upregulation of genes associated with DNA damage and repair, heat shock, and M1-like macrophage infiltration in the cardiac tissues of COVID-19 patients. The DNA damage present in the SARS-CoV-2 patient samples, were further confirmed by γ-H2Ax immunohistochemistry. In comparison, pH1N1 showed upregulation of interferon-stimulated genes, in particular interferon and complement pathways, when compared with COVID-19 patients. These data demonstrate the emergence of distinct transcriptomic profiles in cardiac tissues of SARS-CoV-2 and pH1N1 influenza infection supporting the need for a greater understanding of the effects on extra-pulmonary organs, including the cardiovascular system of COVID-19 patients, to delineate the immunopathobiology of SARS-CoV-2 infection, and long term impact on health.


Assuntos
COVID-19 , Doenças Cardiovasculares , Humanos , SARS-CoV-2 , Transcriptoma , Interferons
4.
Cancer Metastasis Rev ; 41(4): 953-963, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36205821

RESUMO

Despite significant advances in our understanding of tumourigenesis and cancer therapeutics, cancer continues to account for 30% of worldwide deaths. Therefore, there remains an unmet need for the development of cancer therapies to improve patient quality of life and survival outcomes. The inner nuclear membrane has an essential role in cell division, cell signalling, transcription, cell cycle progression, chromosome tethering, cell migration and mitosis. Furthermore, expression of several inner nuclear membrane proteins has been shown to be frequently altered in tumour cells, resulting in the dysregulation of cellular pathways to promote tumourigenesis. However, to date, minimal research has been conducted to investigate how targeting these dysregulated and variably expressed proteins may provide a novel avenue for cancer therapies. In this review, we present an overview of the involvement of the inner nuclear membrane proteins within the hallmarks of cancer and how they may be exploited as potent anti-cancer therapeutics.


Assuntos
Carcinogênese , Proteínas de Membrana , Membrana Nuclear , Proteínas Nucleares , Humanos , Carcinogênese/patologia , Proteínas de Membrana/metabolismo , Mitose , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
5.
Prostate ; 83(7): 628-640, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811381

RESUMO

BACKGROUND: Activation and regulation of androgen receptor (AR) signaling and the DNA damage response impact the prostate cancer (PCa) treatment modalities of androgen deprivation therapy (ADT) and radiotherapy. Here, we have evaluated a role for human single-strand binding protein 1 (hSSB1/NABP2) in modulation of the cellular response to androgens and ionizing radiation (IR). hSSB1 has defined roles in transcription and maintenance of genome stability, yet little is known about this protein in PCa. METHODS: We correlated hSSB1 with measures of genomic instability across available PCa cases from The Cancer Genome Atlas (TCGA). Microarray and subsequent pathway and transcription factor enrichment analysis were performed on LNCaP and DU145 prostate cancer cells. RESULTS: Our data demonstrate that hSSB1 expression in PCa correlates with measures of genomic instability including multigene signatures and genomic scars that are reflective of defects in the repair of DNA double-strand breaks via homologous recombination. In response to IR-induced DNA damage, we demonstrate that hSSB1 regulates cellular pathways that control cell cycle progression and the associated checkpoints. In keeping with a role for hSSB1 in transcription, our analysis revealed that hSSB1 negatively modulates p53 and RNA polymerase II transcription in PCa. Of relevance to PCa pathology, our findings highlight a transcriptional role for hSSB1 in regulating the androgen response. We identified that AR function is predicted to be impacted by hSSB1 depletion, whereby this protein is required to modulate AR gene activity in PCa. CONCLUSIONS: Our findings point to a key role for hSSB1 in mediating the cellular response to androgen and DNA damage via modulation of transcription. Exploiting hSSB1 in PCa might yield benefits as a strategy to ensure a durable response to ADT and/or radiotherapy and improved patient outcomes.


Assuntos
Proteínas de Ligação a DNA , Proteínas Mitocondriais , Neoplasias da Próstata , Humanos , Masculino , Antagonistas de Androgênios/farmacologia , Androgênios/metabolismo , Linhagem Celular Tumoral , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Instabilidade Genômica , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Proteínas Mitocondriais/metabolismo
6.
Br J Cancer ; 129(12): 2014-2024, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37914802

RESUMO

BACKGROUND: Lung cancer is the biggest cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) accounts for 85-90% of all lung cancers. Identification of novel therapeutic targets are required as drug resistance impairs chemotherapy effectiveness. COMMD4 is a potential NSCLC therapeutic target. The aims of this study were to investigate the COMMD4-H2B binding pose and develop a short H2B peptide that disrupts the COMMD4-H2B interaction and mimics COMMD4 siRNA depletion. METHODS: Molecular modelling, in vitro binding and site-directed mutagenesis were used to identify the COMMD4-H2B binding pose and develop a H2B peptide to inhibit the COMMD4-H2B interaction. Cell viability, DNA repair and mitotic catastrophe assays were performed to determine whether this peptide can specially kill NSCLC cells. RESULTS: Based on the COMMD4-H2B binding pose, we have identified a H2B peptide that inhibits COMMD4-H2B by directly binding to COMMD4 on its H2B binding binding site, both in vitro and in vivo. Treatment of NSCLC cell lines with this peptide resulted in increased sensitivity to ionising radiation, increased DNA double-strand breaks and induction of mitotic catastrophe in NSCLC cell lines. CONCLUSIONS: Our data shows that COMMD4-H2B represents a novel potential NSCLC therapeutic target.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Reparo do DNA , Peptídeos/genética
7.
Phys Chem Chem Phys ; 25(36): 24657-24677, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37665626

RESUMO

Barrier-to-autointegration factor (Banf1) is a small DNA-bridging protein. The binding status of Banf1 to DNA is regulated by its N-terminal phosphorylation and dephosphorylation, which plays a critical role in cell proliferation. Banf1 can be phosphorylated at Ser4 into mono-phosphorylated Banf1, which is further phosphorylated at Thr3 to form di-phosphorylated Banf1. It was observed decades ago that mono-phosphorylated Banf1 cannot bind to DNA. However, the underlying molecular- and atomic-level mechanisms remain unclear. A clear understanding of these mechanisms will aid in interfering with the cell proliferation process for better global health. Herein, we explored the detailed atomic bases of unphosphorylated Banf1-DNA binding and how mono- and di-phosphorylation of Banf1 impair these atomic bases to eliminate its DNA-binding capability, followed by exploring the DNA-binding capability of mono- and di-phosphorylation Banf1, using comprehensive and systematic molecular modelling and molecular dynamics simulations. This work presented in detail the residue-level binding energies, hydrogen bonds and water bridges between Banf1 and DNA, some of which have not been reported. Moreover, we revealed that mono-phosphorylation of Banf1 causes its N-terminal secondary structure changes, which in turn induce significant changes in Banf1's DNA binding surface, thus eliminating its DNA-binding capability. At the atomic level, we also uncovered the alterations in interactions due to the induction of mono-phosphorylation that result in the N-terminal secondary structure changes of Banf1. Additionally, our modelling showed that phosphorylated Banf1 with their dominant N-terminal secondary structures bind to DNA with a significantly lower affinity and the docked binding pose are not stable in MD simulations. These findings help future studies in predicting effect of mutations in Banf1 on its DNA-binding capability and open a novel avenue for the development of therapeutics such as cancer drugs, targeting cell proliferation by inducing conformational changes in Banf1's N-terminal domain.


Assuntos
Simulação de Dinâmica Molecular , Fosforilação , Conformação Molecular , Proliferação de Células , Ligação de Hidrogênio
8.
Nucleic Acids Res ; 49(6): 3294-3307, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660778

RESUMO

DNA repair pathways are essential to maintain the integrity of the genome and prevent cell death and tumourigenesis. Here, we show that the Barrier-to-Autointegration Factor (Banf1) protein has a role in the repair of DNA double-strand breaks. Banf1 is characterized as a nuclear envelope protein and mutations in Banf1 are associated with the severe premature aging syndrome, Néstor-Guillermo Progeria Syndrome. We have previously shown that Banf1 directly regulates the activity of PARP1 in the repair of oxidative DNA lesions. Here, we show that Banf1 also has a role in modulating DNA double-strand break repair through regulation of the DNA-dependent Protein Kinase catalytic subunit, DNA-PKcs. Specifically, we demonstrate that Banf1 relocalizes from the nuclear envelope to sites of DNA double-strand breaks. We also show that Banf1 can bind to and directly inhibit the activity of DNA-PKcs. Supporting this, cellular depletion of Banf1 leads to an increase in non-homologous end-joining and a decrease in homologous recombination, which our data suggest is likely due to unrestrained DNA-PKcs activity. Overall, this study identifies how Banf1 regulates double-strand break repair pathway choice by modulating DNA-PKcs activity to control genome stability within the cell.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Células HEK293 , Recombinação Homóloga , Humanos
9.
Proteins ; 90(1): 176-185, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34369011

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel, highly infectious RNA virus that belongs to the coronavirus family. Replication of the viral genome is a fundamental step in the virus life cycle and SARS-CoV-2 non-structural protein 9 (Nsp9) is shown to be essential for virus replication through its ability to bind RNA in the closely related SARS-CoV-1 strain. Two recent studies revealing the three-dimensional structure of Nsp9 from SARS-CoV-2 have demonstrated a high degree of similarity between Nsp9 proteins within the coronavirus family. However, the binding affinity to RNA is very low which, until now, has prevented the determination of the structural details of this interaction. In this study, we have utilized nuclear magnetic resonance spectroscopy (NMR) in combination with surface biolayer interferometry (BLI) to reveal a distinct binding interface for both ssDNA and RNA that is different to the one proposed in the recently solved SARS-CoV-2 replication and transcription complex (RTC) structure. Based on these data, we have proposed a structural model of a Nsp9-RNA complex, shedding light on the molecular details of these important interactions.


Assuntos
DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Sítios de Ligação , Interferometria , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA , Soluções
10.
Mol Cell ; 54(3): 445-59, 2014 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-24746700

RESUMO

Mutations within BRCA1 predispose carriers to a high risk of breast and ovarian cancers. BRCA1 functions to maintain genomic stability through the assembly of multiple protein complexes involved in DNA repair, cell-cycle arrest, and transcriptional regulation. Here, we report the identification of a DNA damage-induced BRCA1 protein complex containing BCLAF1 and other key components of the mRNA-splicing machinery. In response to DNA damage, this complex regulates pre-mRNA splicing of a number of genes involved in DNA damage signaling and repair, thereby promoting the stability of these transcripts/proteins. Further, we show that abrogation of this complex results in sensitivity to DNA damage, defective DNA repair, and genomic instability. Interestingly, mutations in a number of proteins found within this complex have been identified in numerous cancer types. These data suggest that regulation of splicing by the BRCA1-mRNA splicing complex plays an important role in the cellular response to DNA damage.


Assuntos
Proteína BRCA1/metabolismo , Reparo do DNA , Instabilidade Genômica , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Sobrevivência Celular/efeitos da radiação , Dano ao DNA , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Genoma Humano , Células HEK293 , Humanos , Fosforilação , Processamento de Proteína Pós-Traducional , Splicing de RNA , Tolerância a Radiação , Proteínas Repressoras/metabolismo , Proteínas Supressoras de Tumor/metabolismo
11.
Semin Cell Dev Biol ; 86: 121-128, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29577982

RESUMO

Our genomic DNA is found predominantly in a double-stranded helical conformation. However, there are a number of cellular transactions and DNA damage events that result in the exposure of single stranded regions of DNA. DNA transactions require these regions of single stranded DNA, but they are only transient in nature as they are particularly susceptible to further damage through chemical and enzymatic degradation, metabolic activation, and formation of secondary structures. To protect these exposed regions of single stranded DNA, all living organisms have members of the Single Stranded DNA Binding (SSB) protein family, which are characterised by a conserved oligonucleotide/oligosaccharide-binding (OB) domain. In humans, three such proteins members have been identified; namely the Replication Protein A (RPA) complex, hSSB1 and hSSB2. While RPA is extremely well characterised, the roles of hSSB1 and hSSB2 have only emerged recently. In this review, we discuss the critical roles that hSSB1 plays in the maintenance of genomic stability.


Assuntos
Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Mitocondriais/metabolismo , DNA/genética , Humanos
12.
Proteins ; 88(2): 319-326, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31443132

RESUMO

Single-stranded DNA-binding proteins (SSBs) are required for all known DNA metabolic events such as DNA replication, recombination and repair. While a wealth of structural and functional data is available on the essential human SSB, hSSB1 (NABP2/OBFC2B), the close homolog hSSB2 (NABP1/OBFC2A) remains relatively uncharacterized. Both SSBs possess a well-structured OB (oligonucleotide/oligosaccharide-binding) domain that is able to recognize single-stranded DNA (ssDNA) followed by a flexible carboxyl-tail implicated in the interaction with other proteins. Despite the high sequence similarity of the OB domain, several recent studies have revealed distinct functional differences between hSSB1 and hSSB2. In this study, we show that hSSB2 is able to recognize cyclobutane pyrimidine dimers (CPD) that form in cellular DNA as a consequence of UV damage. Using a combination of biolayer interferometry and NMR, we determine the molecular details of the binding of the OB domain of hSSB2 to CPD-containing ssDNA, confirming the role of four key aromatic residues in hSSB2 (W59, Y78, W82, and Y89) that are also conserved in hSSB1. Our structural data thus demonstrate that ssDNA recognition by the OB fold of hSSB2 is highly similar to hSSB1, indicating that one SSB may be able to replace the other in any initial ssDNA binding event. However, any subsequent recruitment of other repair proteins most likely depends on the divergent carboxyl-tail and as such is likely to be different between hSSB1 and hSSB2.


Assuntos
Dano ao DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Raios Ultravioleta , Sítios de Ligação/genética , Reparo do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Interferometria/métodos , Espectroscopia de Ressonância Magnética/métodos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Oligonucleotídeos/genética , Oligonucleotídeos/metabolismo , Ligação Proteica , Domínios Proteicos
13.
Mol Cancer ; 19(1): 16, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31987050

RESUMO

Since the publication of this work [1] and in response to a recent query that was brought to our attention in relation to the Western Blot in Figure 1(C) for NP2, protein lysates prepared around the same time as those presented in the manuscript in question, were run by SDS-PAGE under similar experimental conditions and probed using the same primary antibodies to NP1 and NP2 that were used originally.

14.
Br J Cancer ; 123(4): 591-603, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32439936

RESUMO

BACKGROUND: Non-small cell lung cancers (NSCLC) account for 85-90% of all lung cancers. As drug resistance critically impairs chemotherapy effectiveness, there is great need to identify new therapeutic targets. The aims of this study were to investigate the prognostic and therapeutic potential of the copper-metabolism-domain-protein, COMMD4, in NSCLC. METHODS: The expression of COMMD4 in NSCLC was investigated using bioinformatic analysis, immunoblotting of immortalised human bronchial epithelial (HBEC) and NSCLC cell lines, qRT-PCR and immunohistochemistry of tissue microarrays. COMMD4 function was additionally investigated in HBEC and NSCLC cells depleted of COMMD4, using small interfering RNA sequences. RESULTS: Bioinformatic analysis and in vitro analysis of COMMD4 transcripts showed that COMMD4 levels were upregulated in NSCLC and elevated COMMD4 was associated with poor prognosis in adenocarcinoma (ADC). Immunoblotting demonstrated that COMMD4 expression was upregulated in NSCLC cells and siRNA-depletion of COMMD4, decreased cell proliferation and reduced cell viability. Cell death was further enhanced after exposure to DNA damaging agents. COMMD4 depletion caused NSCLC cells to undergo mitotic catastrophe and apoptosis. CONCLUSIONS: Our data indicate that COMMD4 may function as a prognostic factor in ADC NSCLC. Additionally, COMMD4 is a potential therapeutic target for NSCLC, as its depletion induces cancer cell death.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Regulação para Cima , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Biologia Computacional , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Análise Serial de Tecidos
15.
Int J Mol Sci ; 21(15)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707824

RESUMO

A promising protein target for computational drug development, the human cluster of differentiation 38 (CD38), plays a crucial role in many physiological and pathological processes, primarily through the upstream regulation of factors that control cytoplasmic Ca2+ concentrations. Recently, a small-molecule inhibitor of CD38 was shown to slow down pathways relating to aging and DNA damage. We examined the performance of seven docking programs for their ability to model protein-ligand interactions with CD38. A test set of twelve CD38 crystal structures, containing crystallized biologically relevant substrates, were used to assess pose prediction. The rankings for each program based on the median RMSD between the native and predicted were Vina, AD4 > PLANTS, Gold, Glide, Molegro > rDock. Forty-two compounds with known affinities were docked to assess the accuracy of the programs at affinity/ranking predictions. The rankings based on scoring power were: Vina, PLANTS > Glide, Gold > Molegro >> AutoDock 4 >> rDock. Out of the top four performing programs, Glide had the only scoring function that did not appear to show bias towards overpredicting the affinity of the ligand-based on its size. Factors that affect the reliability of pose prediction and scoring are discussed. General limitations and known biases of scoring functions are examined, aided in part by using molecular fingerprints and Random Forest classifiers. This machine learning approach may be used to systematically diagnose molecular features that are correlated with poor scoring accuracy.


Assuntos
ADP-Ribosil Ciclase 1/antagonistas & inibidores , ADP-Ribosil Ciclase 1/química , Descoberta de Drogas/métodos , Inibidores Enzimáticos/química , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular/métodos , Algoritmos , Sítios de Ligação , Bases de Dados de Proteínas , Ligantes , Aprendizado de Máquina , Conformação Proteica , Software
16.
Nucleic Acids Res ; 45(14): 8609-8620, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28609781

RESUMO

The maintenance of genome stability depends on the ability of the cell to repair DNA efficiently. Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. While the role of human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) in the repair of double-stranded breaks has been well established, we have recently shown that it is also essential for the base excision repair (BER) pathway following oxidative DNA damage. However, unlike in DSB repair, the formation of stable hSSB1 oligomers under oxidizing conditions is an important prerequisite for its proper function in BER. In this study, we have used solution-state NMR in combination with biophysical and functional experiments to obtain a structural model of hSSB1 self-oligomerization. We reveal that hSSB1 forms a tetramer that is structurally similar to the SSB from Escherichia coli and is stabilized by two cysteines (C81 and C99) as well as a subset of charged and hydrophobic residues. Our structural and functional data also show that hSSB1 oligomerization does not preclude its function in DSB repair, where it can interact with Ints3, a component of the SOSS1 complex, further establishing the versatility that hSSB1 displays in maintaining genome integrity.


Assuntos
Reparo do DNA , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas Mitocondriais/química , Multimerização Proteica , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dano ao DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Mutação , Oxirredução , Ligação Proteica , Estrutura Quaternária de Proteína , Eletricidade Estática
17.
Nucleic Acids Res ; 44(16): 7963-73, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27387285

RESUMO

Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.


Assuntos
DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Sequência de Aminoácidos , Aminoácidos Aromáticos/metabolismo , Análise Mutacional de DNA , Células HeLa , Humanos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Alinhamento de Sequência , Soluções
18.
Adv Exp Med Biol ; 1056: 123-135, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29754178

RESUMO

The role of extracellular vesicles (EV) in carcinogenesis has become the focus of much research. These microscopic messengers have been found to regulate immune system function, particularly in tumorigenesis, as well as conditioning future metastatic sites for the attachment and growth of tumor tissue. Through an interaction with a range of host tissues, EVs are able to generate a pro-tumor environment that is essential for tumorigenesis. These small nanovesicles are an ideal candidate for a non-invasive indicator of pathogenesis and/or disease progression as they can display individualized nucleic acid, protein, and lipid expression profiles that are often reflective of disease state, and can be easily detected in bodily fluids, even after extended cryo-storage. Furthermore, the ability of EVs to securely transport signaling molecules and localize to distant tissues suggests these particles may greatly improve the delivery of therapeutic treatments, particularly in cancer. In this chapter, we discuss the role of EV in the identification of new diagnostic and prognostic cancer biomarkers, as well as the development of novel EV-based cancer therapies.


Assuntos
Vesículas Extracelulares/fisiologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Neoplasias/patologia , Animais , Biomarcadores Tumorais , Vacinas Anticâncer/uso terapêutico , Comunicação Celular , Ensaios Clínicos como Assunto , Exossomos/genética , Exossomos/fisiologia , Exossomos/transplante , Vesículas Extracelulares/transplante , Terapia Genética/métodos , Humanos , Terapia de Alvo Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/terapia , Prognóstico
19.
BMC Mol Biol ; 18(1): 13, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28506294

RESUMO

BACKGROUND: Maintenance of genome stability is critical in human cells. Mutations in or loss of genome stability pathways can lead to a number of pathologies including cancer. hSSB1 is a critical DNA repair protein functioning in the repair and signalling of stalled DNA replication forks, double strand DNA breaks and oxidised DNA lesions. The BLM helicase is central to the repair of both collapsed DNA replication forks and double strand DNA breaks by homologous recombination. RESULTS: In this study, we demonstrate that hSSB1 and BLM helicase form a complex in cells and the interaction is altered in response to ionising radiation (IR). BLM and hSSB1 also co-localised at nuclear foci following IR-induced double strand breaks and stalled replication forks. We show that hSSB1 depleted cells contain less BLM protein and that this deficiency is due to proteasome mediated degradation of BLM. Consequently, there is a defect in recruitment of BLM to chromatin in response to ionising radiation-induced DSBs and to hydroxyurea-induced stalled and collapsed replication forks. CONCLUSIONS: Our data highlights that BLM helicase and hSSB1 function in a dynamic complex in cells and that this complex is likely required for BLM protein stability and function.


Assuntos
RecQ Helicases/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA , Replicação do DNA , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , Estabilidade Proteica , Proteólise , Estresse Fisiológico
20.
Nucleic Acids Res ; 43(18): 8817-29, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26261212

RESUMO

The maintenance of genome stability is essential to prevent loss of genetic information and the development of diseases such as cancer. One of the most common forms of damage to the genetic code is the oxidation of DNA by reactive oxygen species (ROS), of which 8-oxo-7,8-dihydro-guanine (8-oxoG) is the most frequent modification. Previous studies have established that human single-stranded DNA-binding protein 1 (hSSB1) is essential for the repair of double-stranded DNA breaks by the process of homologous recombination. Here we show that hSSB1 is also required following oxidative damage. Cells lacking hSSB1 are sensitive to oxidizing agents, have deficient ATM and p53 activation and cannot effectively repair 8-oxoGs. Furthermore, we demonstrate that hSSB1 forms a complex with the human oxo-guanine glycosylase 1 (hOGG1) and is important for hOGG1 localization to the damaged chromatin. In vitro, hSSB1 binds directly to DNA containing 8-oxoguanines and enhances hOGG1 activity. These results underpin the crucial role hSSB1 plays as a guardian of the genome.


Assuntos
DNA Glicosilases/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Guanina/análogos & derivados , Proteínas Mitocondriais/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular , Cromatina/enzimologia , Cromatina/metabolismo , Adutos de DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Guanina/metabolismo , Células HeLa , Humanos , Proteínas Mitocondriais/fisiologia , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA