Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 43(12): 2397-2423, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38760575

RESUMO

The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1 , Decitabina , Ubiquitina-Proteína Ligases , Decitabina/farmacologia , Humanos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Metilação de DNA/efeitos dos fármacos , Antimetabólitos Antineoplásicos/farmacologia , Animais , Sumoilação/efeitos dos fármacos
2.
PLoS Genet ; 18(4): e1010093, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35381001

RESUMO

Novel drug targets for sustained reduction in body mass index (BMI) are needed to curb the epidemic of obesity, which affects 650 million individuals worldwide and is a causal driver of cardiovascular and metabolic disease and mortality. Previous studies reported that the Arg95Ter nonsense variant of GPR151, an orphan G protein-coupled receptor, is associated with reduced BMI and reduced risk of Type 2 Diabetes (T2D). Here, we further investigate GPR151 with the Pakistan Genome Resource (PGR), which is one of the largest exome biobanks of human homozygous loss-of-function carriers (knockouts) in the world. Among PGR participants, we identify eleven GPR151 putative loss-of-function (plof) variants, three of which are present at homozygosity (Arg95Ter, Tyr99Ter, and Phe175LeufsTer7), with a cumulative allele frequency of 2.2%. We confirm these alleles in vitro as loss-of-function. We test if GPR151 plof is associated with BMI, T2D, or other metabolic traits and find that GPR151 deficiency in complete human knockouts is not associated with clinically significant differences in these traits. Relative to Gpr151+/+ mice, Gpr151-/- animals exhibit no difference in body weight on normal chow and higher body weight on a high-fat diet. Together, our findings indicate that GPR151 antagonism is not a compelling therapeutic approach to treatment of obesity.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores Acoplados a Proteínas G/metabolismo , Animais , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Exoma , Frequência do Gene , Humanos , Camundongos , Obesidade/genética
3.
Arthroscopy ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39209076

RESUMO

PURPOSE: To retrospectively compare the clinical outcomes of patients undergoing endoscopic gluteal tendon repair with and without the use of dermal allograft augmentation. METHODS: A retrospective review of prospectively collected data, single-surgeon cohort study was performed on all patients undergoing endoscopic gluteus medius repair (GMR) and gluteus medius repair with augmentation (GMR-A) between April 2017 and April 2022. Dermal allograft augmentation was utilized in cases where intraoperative gluteus tissue quality was poor. An electronic survey of patient-reported outcome measures (PROMs) was completed at a minimum of 1 year postoperatively. PROMs included a Visual Analogue Scale (VAS) for pain; University of California, Los Angeles (UCLA) Activity Scale; modified Harris Hip Score (mHHS); Hip Outcome Score-Sport-Specific Subscale (HOS-SSS); and a Single Assessment Numeric Evaluation (SANE). The proportion of patients achieving the minimal clinically important difference (MCID), patient acceptable symptom state (PASS), and substantial clinical benefit (SCB) for each PROM were compared between groups. RESULTS: Sixty-four patients were reached for follow-up (26 GMR, 38 GMR-A). No differences were found between the groups in terms of demographics. There was a significantly longer time to follow-up in the GMR group (39.4±26.9 vs 24.2±11.7 months, p=0.003). There were no differences between the GMR and GMR-A groups in terms of postoperative PROMs including VAS (3.3±2.6 vs 3.3±2.8, p=0.99), UCLA (5.8±2.1 vs 5.1±2.0, p=0.17), mHHS (70.1±18.1 vs 68.9±17.8, p=0.80), HOS-SSS (67.7±28.9 vs 62.5±30.2, p=0.50), and SANE (71.7±27.9 vs 71.3±22.8, p=0.95). A significantly greater proportion of patients in the GMR group achieved a PASS for UCLA (64% vs. 34%, p=0.02). One patient each in the GMR (3.8%) and GMR-A (2.6%) groups underwent revision gluteus medius repair with dermal allograft augmentation at the final follow-up. CONCLUSIONS: Our study demonstrates comparable clinical outcomes with and without the use of dermal allograft augmentation in endoscopic gluteus medius repairs. LEVEL OF EVIDENCE: III, retrospective comparative series.

4.
Am J Obstet Gynecol ; 228(3): 342.e1-342.e12, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36075482

RESUMO

BACKGROUND: Historically, noninvasive techniques are only able to identify chromosomal anomalies that accounted for <50% of all congenital defects; the other congenital defects are diagnosed via ultrasound evaluations in the later stages of pregnancy. Metabolomic analysis may provide an important improvement, potentially addressing the need for novel noninvasive and multicomprehensive early prenatal screening tools. A growing body of evidence outlines notable metabolic alterations in different biofluids derived from pregnant women carrying fetuses with malformations, suggesting that such an approach may allow the discovery of biomarkers common to most fetal malformations. In addition, metabolomic investigations are inexpensive, fast, and risk-free and often generate high performance screening tests that may allow early detection of a given pathology. OBJECTIVE: This study aimed to evaluate the diagnostic accuracy of an ensemble machine learning model based on maternal serum metabolomic signatures for detecting fetal malformations, including both chromosomal anomalies and structural defects. STUDY DESIGN: This was a multicenter observational retrospective study that included 2 different arms. In the first arm, a total of 654 Italian pregnant women (334 cases with fetuses with malformations and 320 controls with normal developing fetuses) were enrolled and used to train an ensemble machine learning classification model based on serum metabolomics profiles. In the second arm, serum samples obtained from 1935 participants of the New Zealand Screening for Pregnancy Endpoints study were blindly analyzed and used as a validation cohort. Untargeted metabolomics analysis was performed via gas chromatography-mass spectrometry. Of note, 9 individual machine learning classification models were built and optimized via cross-validation (partial least squares-discriminant analysis, linear discriminant analysis, naïve Bayes, decision tree, random forest, k-nearest neighbor, artificial neural network, support vector machine, and logistic regression). An ensemble of the models was developed according to a voting scheme statistically weighted by the cross-validation accuracy and classification confidence of the individual models. This ensemble machine learning system was used to screen the validation cohort. RESULTS: Significant metabolic differences were detected in women carrying fetuses with malformations, who exhibited lower amounts of palmitic, myristic, and stearic acids; N-α-acetyllysine; glucose; L-acetylcarnitine; fructose; para-cresol; and xylose and higher levels of serine, alanine, urea, progesterone, and valine (P<.05), compared with controls. When applied to the validation cohort, the screening test showed a 99.4%±0.6% accuracy (specificity of 99.9%±0.1% [1892 of 1894 controls correctly identified] with a sensitivity of 78%±6% [32 of 41 fetal malformations correctly identified]). CONCLUSION: This study provided clinical validation of a metabolomics-based prenatal screening test to detect the presence of congenital defects. Further investigations are needed to enable the identification of the type of malformation and to confirm these findings on even larger study populations.


Assuntos
Transtornos Cromossômicos , Diagnóstico Pré-Natal , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Teorema de Bayes , Diagnóstico Pré-Natal/métodos , Biomarcadores , Metabolômica , Aberrações Cromossômicas
5.
Am J Pathol ; 191(1): 157-167, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33129760

RESUMO

Colorectal cancer (CRC) is a leading nonfamilial cause of cancer mortality among men and women. Although various genetic and epigenetic mechanisms have been identified, the full molecular mechanisms deriving CRC tumorigenesis are not fully understood. This study demonstrates that cell adhesion molecule transmembrane and immunoglobulin domain containing 1 (TMIGD1) are highly expressed in mouse and human normal intestinal epithelial cells. TMIGD1 knockout mice were developed, and the loss of TMIGD1 in mice was shown to result in the development of adenomas in small intestine and colon. In addition, the loss of TMIGD1 significantly impaired intestinal epithelium brush border membrane, junctional polarity, and maturation. Mechanistically, TMIGD1 inhibits tumor cell proliferation and cell migration, arrests cell cycle at the G2/M phase, and induces expression of p21CIP1 (cyclin-dependent kinase inhibitor 1), and p27KIP1 (cyclin-dependent kinase inhibitor 1B) expression, key cell cycle inhibitor proteins involved in the regulation of the cell cycle. Moreover, TMIGD1 is shown to be progressively down-regulated in sporadic human CRC, and its downregulation correlates with poor overall survival. The findings herein identify TMIGD1 as a novel tumor suppressor gene and provide new insights into the pathogenesis of colorectal cancer and a novel potential therapeutic target.


Assuntos
Pontos de Checagem do Ciclo Celular/fisiologia , Neoplasias do Colo/metabolismo , Glicoproteínas de Membrana/metabolismo , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/metabolismo , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Genes Supressores de Tumor/fisiologia , Humanos , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
6.
J Am Soc Nephrol ; 32(11): 2834-2850, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34716244

RESUMO

BACKGROUND: CKD, characterized by retained uremic solutes, is a strong and independent risk factor for thrombosis after vascular procedures . Urem ic solutes such as indoxyl sulfate (IS) and kynurenine (Kyn) mediate prothrombotic effect through tissue factor (TF). IS and Kyn biogenesis depends on multiple enzymes, with therapeutic implications unexplored. We examined the role of indoleamine 2,3-dioxygenase-1 (IDO-1), a rate-limiting enzyme of kynurenine biogenesis, in CKD-associated thrombosis after vascular injury. METHODS: IDO-1 expression in mice and human vessels was examined. IDO-1-/- mice, IDO-1 inhibitors, an adenine-induced CKD, and carotid artery injury models were used. RESULTS: Both global IDO-1-/- CKD mice and IDO-1 inhibitor in wild-type CKD mice showed reduced blood Kyn levels, TF expression in their arteries, and thrombogenicity compared with respective controls. Several advanced IDO-1 inhibitors downregulated TF expression in primary human aortic vascular smooth muscle cells specifically in response to uremic serum. Further mechanistic probing of arteries from an IS-specific mouse model, and CKD mice, showed upregulation of IDO-1 protein, which was due to inhibition of its polyubiquitination and degradation by IS in vascular smooth muscle cells. In two cohorts of patients with advanced CKD, blood IDO-1 activity was significantly higher in sera of study participants who subsequently developed thrombosis after endovascular interventions or vascular surgery. CONCLUSION: Leveraging genetic and pharmacologic manipulation in experimental models and data from human studies implicate IS as an inducer of IDO-1 and a perpetuator of the thrombotic milieu and supports IDO-1 as an antithrombotic target in CKD.


Assuntos
Indicã/fisiologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/sangue , Cinurenina/fisiologia , Terapia de Alvo Molecular , Complicações Pós-Operatórias/enzimologia , Insuficiência Renal Crônica/enzimologia , Trombose/enzimologia , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Animais , Aorta , Lesões das Artérias Carótidas/complicações , Trombose das Artérias Carótidas/etiologia , Trombose das Artérias Carótidas/prevenção & controle , Meios de Cultura/farmacologia , Indução Enzimática/efeitos dos fármacos , Retroalimentação Fisiológica , Feminino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos de Músculo Liso/efeitos dos fármacos , Complicações Pós-Operatórias/sangue , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Insuficiência Renal Crônica/tratamento farmacológico , Tromboplastina/metabolismo , Trombose/sangue , Trombose/etiologia , Trombose/prevenção & controle , Triptofano/metabolismo , Uremia/sangue
7.
Am J Pathol ; 190(3): 602-613, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32113662

RESUMO

Casitas B-lineage lymphoma (c-Cbl) is a recently identified ubiquitin ligase of nuclear ß-catenin and a suppressor of colorectal cancer (CRC) growth in cell culture and mouse tumor xenografts. We hypothesized that reduction in c-Cbl in colonic epithelium is likely to increase the levels of nuclear ß-catenin in the intestinal crypt, augmenting CRC tumorigenesis in an adenomatous polyposis coli (APCΔ14/+) mouse model. Haploinsufficient c-Cbl mice (APCΔ14/+ c-Cbl+/-) displayed a significant (threefold) increase in atypical hyperplasia and adenocarcinomas in the small and large intestines; however, no differences were noted in the adenoma frequency. In contrast to the APCΔ14/+ c-Cbl+/+ mice, APCΔ14/+ c-Cbl+/- crypts showed nuclear ß-catenin throughout the length of the crypts and up-regulation of Axin2, a canonical Wnt target gene, and SRY-box transcription factor 9, a marker of intestinal stem cells. In contrast, haploinsufficiency of c-Cbl+/- alone was insufficient to induce tumorigenesis regardless of an increase in the number of intestinal epithelial cells with nuclear ß-catenin and SRY-box transcription factor 9 in APC+/+ c-Cbl+/- mice. This study demonstrates that haploinsufficiency of c-Cbl results in Wnt hyperactivation in intestinal crypts and accelerates CRC progression to adenocarcinoma in the milieu of APCΔ14/+, a phenomenon not found with wild-type APC. While emphasizing the role of APC as a gatekeeper in CRC, this study also demonstrates that combined partial loss of c-Cbl and inactivation of APC significantly contribute to CRC tumorigenesis.


Assuntos
Adenocarcinoma/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Haploinsuficiência , Linfoma/genética , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Adenocarcinoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Carcinogênese , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Linfoma/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-cbl/genética , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
8.
Blood ; 134(26): 2399-2413, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31877217

RESUMO

Patients with malignancy are at 4- to 7-fold higher risk of venous thromboembolism (VTE), a potentially fatal, yet preventable complication. Although general mechanisms of thrombosis are enhanced in these patients, malignancy-specific triggers and their therapeutic implication remain poorly understood. Here we examined a colon cancer-specific VTE model and probed a set of metabolites with prothrombotic propensity in the inferior vena cava (IVC) ligation model. Athymic mice injected with human colon adenocarcinoma cells exhibited significantly higher IVC clot weights, a biological readout of venous thrombogenicity, compared with the control mice. Targeted metabolomics analysis of plasma of mice revealed an increase in the blood levels of kynurenine and indoxyl sulfate (tryptophan metabolites) in xenograft-bearing mice, which correlated positively with the increase in the IVC clot size. These metabolites are ligands of aryl hydrocarbon receptor (AHR) signaling. Accordingly, plasma from the xenograft-bearing mice activated the AHR pathway and augmented tissue factor (TF) and plasminogen activator inhibitor 1 (PAI-1) levels in venous endothelial cells in an AHR-dependent manner. Consistent with these findings, the endothelium from the IVC of xenograft-bearing animals revealed nuclear AHR and upregulated TF and PAI-1 expression, telltale signs of an activated AHR-TF/PAI-1 axis. Importantly, pharmacological inhibition of AHR activity suppressed TF and PAI-1 expression in endothelial cells of the IVC and reduced clot weights in both kynurenine-injected and xenograft-bearing mice. Together, these data show dysregulated tryptophan metabolites in a mouse cancer model, and they reveal a novel link between these metabolites and the control of the AHR-TF/PAI-1 axis and VTE in cancer.


Assuntos
Neoplasias do Colo/complicações , Modelos Animais de Doenças , Metaboloma , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Tromboplastina/metabolismo , Tromboembolia Venosa/etiologia , Animais , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Nus , Transdução de Sinais , Triptofano/metabolismo , Tromboembolia Venosa/metabolismo , Tromboembolia Venosa/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Prenat Diagn ; 41(6): 743-753, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33440021

RESUMO

OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies. METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models. RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine, and putrescine were determined as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies.


Assuntos
Cardiopatias Congênitas/diagnóstico , Metabolômica/métodos , Adulto , Feminino , Cardiopatias Congênitas/sangue , Cardiopatias Congênitas/epidemiologia , Humanos , Itália/epidemiologia , Metabolômica/normas , Metabolômica/estatística & dados numéricos , Teste Pré-Natal não Invasivo/métodos , Teste Pré-Natal não Invasivo/estatística & dados numéricos , Gravidez , Estudos Prospectivos
10.
Kidney Int ; 97(3): 538-550, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932072

RESUMO

Emerging evidence in animal models of chronic kidney disease (CKD) implicates Aryl Hydrocarbon Receptor (AHR) signaling as a mediator of uremic toxicity. However, details about its tissue-specific and time-dependent activation in response to various renal pathologies remain poorly defined. Here, a comprehensive analysis of AHR induction was conducted in response to discrete models of kidney diseases using a transgenic mouse line expressing the AHR responsive-promoter tethered to a ß-galactosidase reporter gene. Following validation using a canonical AHR ligand (a dioxin derivative), the transgenic mice were subjected to adenine-induced and ischemia/reperfusion-induced injury models representing CKD and acute kidney injury (AKI), respectively, in humans. Indoxyl sulfate was artificially increased in mice through the drinking water and by inhibiting its excretion into the urine. Adenine-fed mice showed a distinct and significant increase in ß-galactosidase in the proximal and distal renal tubules, cardiac myocytes, hepatocytes, and microvasculature in the cerebral cortex. The pattern of ß-galactosidase increase coincided with the changes in serum indoxyl sulfate levels. Machine-learning-based image quantification revealed positive correlations between indoxyl sulfate levels and ß-galactosidase expression in various tissues. This pattern of ß-galactosidase expression was recapitulated in the indoxyl sulfate-specific model. The ischemia/reperfusion injury model showed increase in ß-galactosidase in renal tubules that persisted despite reduction in serum indoxyl sulfate and blood urea nitrogen levels. Thus, our results demonstrate a relationship between AHR activation in various tissues of mice with CKD or AKI and the levels of indoxyl sulfate. This study demonstrates the use of a reporter gene mouse to probe tissue-specific manifestations of uremia in translationally relevant animal models and provide hypothesis-generating insights into the mechanism of uremic toxicity that warrant further investigation.


Assuntos
Insuficiência Renal Crônica , Uremia , Animais , Indicã , Camundongos , Camundongos Transgênicos , Receptores de Hidrocarboneto Arílico/genética , Insuficiência Renal Crônica/genética
11.
Int J Mol Sci ; 21(23)2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33276521

RESUMO

Anthropogenic endocrine-disrupting chemicals (EDCs) can contaminate air, soil, and water. Human exposures to EDCs occur through inhalation, absorption, and ingestion. EDCs act by disrupting various pathways in the endocrine system. When the hypothalamic-pituitary-gonadal (HPG) axis is disrupted by EDCs, there can be effects on fertility in both men and women. Not only can fertility be indirectly affected by EDC disruptions of the HPG axis, but EDCs can also directly affect the menstrual cycle and sperm morphology. In this review, we will discuss the current findings on EDCs that can be inhaled. This review examines effects of exposure to prominent EDCs: brominated and organophosphate flame retardants, diesel exhaust, polycyclic aromatic hydrocarbons, cadmium and lead, TCDD, and polychlorinated biphenyls on fertility through alterations that disrupt the HPG axis and fertility through inhalation. Although the studies included herein include multiple exposure routes, all the studies indicate receptor interactions that can occur from inhalation and the associated effects of all compounds on the HPG axis and subsequent fertility.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Disruptores Endócrinos/efeitos adversos , Gônadas/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Poluentes Atmosféricos/classificação , Animais , Disruptores Endócrinos/classificação , Fertilidade/efeitos dos fármacos , Gônadas/metabolismo , Humanos , Hipotálamo/metabolismo , Metais Pesados/química , Hipófise/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Fatores Sexuais , Emissões de Veículos/toxicidade
12.
Am J Pathol ; 188(8): 1921-1933, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30029779

RESUMO

The proto-oncogene ß-catenin drives colorectal cancer (CRC) tumorigenesis. Casitas B-lineage lymphoma (c-Cbl) inhibits CRC tumor growth through targeting nuclear ß-catenin by a poorly understood mechanism. In addition, the role of c-Cbl in human CRC remains largely underexplored. Using a novel quantitative histopathologic technique, we demonstrate that patients with high c-Cbl-expressing tumors had significantly better median survival (3.7 years) compared with low c-Cbl-expressing tumors (1.8 years; P = 0.0026) and were more than twice as likely to be alive at 3 years compared with low c-Cbl tumors (P = 0.0171). Our data further demonstrate that c-Cbl regulation of nuclear ß-catenin requires phosphorylation of c-Cbl Tyr371 because its mutation compromises its ability to target ß-catenin. The tyrosine 371 (Y371H) mutant interacted with but failed to ubiquitinate nuclear ß-catenin. The nuclear localization of the c-Cbl-Y371H mutant contributed to its dominant negative effect on nuclear ß-catenin. The biological importance of c-Cbl-Y371H was demonstrated in various systems, including a transgenic Wnt-8 zebrafish model. c-Cbl-Y371H mutant showed augmented Wnt/ß-catenin signaling, increased Wnt target genes, angiogenesis, and CRC tumor growth. This study demonstrates a strong link between c-Cbl and overall survival of patients with CRC and provides new insights into a possible role of Tyr371 phosphorylation in Wnt/ß-catenin regulation, which has important implications in tumor growth and angiogenesis in CRC.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/mortalidade , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Tirosina/metabolismo , Proteína Wnt1/metabolismo , beta Catenina/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Neovascularização Patológica , Fosforilação , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-cbl/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína Wnt1/genética , Peixe-Zebra , beta Catenina/genética
13.
Environ Res ; 168: 118-129, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296639

RESUMO

BACKGROUND: Comprehensive examinations of placental metal concentrations and correlations with infant parameters are under-investigated. Chattanooga, Tennessee's consistently high incidence of low birth weight and potential for metal exposure provides an ideal opportunity to investigate potential correlations. OBJECTIVES: To investigate the associations between a wide variety of metals in placental tissue and multiple infant parameters. METHODS: A total of 31 elements were screened via ICP-MS in 374 individual placental samples. Of those, 14 were quantifiable in > 86% of the samples. We examined correlations between metal concentrations and infant parameters (birth weight, gestational age, birth weight centile, placental weight, birth length and head circumference). We fit multivariable regression models to estimate the covariate-adjusted associations of birth weight with ln-transformed concentrations of each of the 14 metals and used generalized additive models to examine nonlinear relationships. RESULTS: Some of the strongest relationships with infant parameters came from several lesser-studied metals. Placental rhodium concentrations were negatively correlated with almost all infant parameters. In the fully adjusted regression model, birth weight was significantly associated with several metals. On an IQR (25th to the 75th percentile) basis, estimated changes in birthweight were: for cobalt (82.5 g, IQR=6.05 µg/kg, p = 0.006), iron (-51.5 g, IQR = 171800 µg/kg, p = 0.030), manganese (-27.2 g, IQR=152.1 µg/kg, p = 0.017), lead (-72.7 g, IQR=16.55 µg/kg, p = 0.004) and rhodium (-1365.5 g, IQR = 0.33 µg/kg, p < 0.001). Finally, a generalized additive model showed significant nonlinear relationships between birth weight and concentrations of Co and Rh. CONCLUSIONS: Our comprehensive examination of placental metals illustrate many strong associations between lesser-studied metals and infant parameters. These data, in combination with our correlations of well-studied metals, illustrate a need to consider in utero exposure to a broad array of metals when considering fetal development.


Assuntos
Exposição Materna , Metais , Placenta , Resultado da Gravidez , Peso ao Nascer , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Troca Materno-Fetal , Metais/química , Metais/toxicidade , Placenta/química , Gravidez , Resultado da Gravidez/epidemiologia , Tennessee
14.
BMC Pregnancy Childbirth ; 19(1): 471, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805895

RESUMO

BACKGROUND: Congenital malformations of the central nervous system (CNS) consist of a wide range of birth defects of multifactorial origin. METHODS: Concentrations of 44 metals were determined by Inductively Coupled Plasma Mass Spectrometry in serum of 111 mothers in the second trimester of pregnancy who carried a malformed fetus and compared them with serum concentrations of the same metals in 90 mothers with a normally developed fetus at the same week of pregnancy. Data are reported as means ± standard deviations. RESULTS: We found a direct relationship between congenital defects of the CNS and maternal serum concentration of aluminum: it was statistically higher in women carrying a fetus with this class of malformation, compared both to mothers carrying a fetus with another class of malformation (6.45 ± 15.15 µg/L Vs 1.44 ± 4.21 µg/L, p < 0.0006) and to Controls (i.e. mothers carrying a normally-developed fetus) (6.45 ± 15.15 µg/L Vs 0.11 ± 0.51 µg/L, p < 0.0006). Moreover, Aluminum abundances were below the limit of detection in the majority of control samples. CONCLUSION: CAluminum may play a role in the onset of central nervous system malformations, although the exact Aluminum species and related specific type of malformation needs further elucidation.


Assuntos
Exposição Materna , Metais Pesados/sangue , Malformações do Sistema Nervoso/sangue , Complicações na Gravidez/sangue , Adulto , Alumínio/sangue , Estudos de Casos e Controles , Sistema Nervoso Central/anormalidades , Aberrações Cromossômicas , Feminino , Feto/anormalidades , Humanos , Espectrometria de Massas , Gravidez , Segundo Trimestre da Gravidez/sangue
16.
Metabolomics ; 14(6): 77, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-30830338

RESUMO

BACKGROUND: Central nervous system anomalies represent a wide range of congenital birth defects, with an incidence of approximately 1% of all births. They are currently diagnosed using ultrasound evaluation. However, there is strong need for a more accurate and less operator-dependent screening method. OBJECTIVES: To perform a characterization of maternal serum in order to build a metabolomic fingerprint resulting from congenital anomalies of the central nervous system. METHODS: This is a case-control pilot study. Metabolomic profiles were obtained from serum of 168 mothers (98 controls and 70 cases), using gas chromatography coupled to mass spectrometry. Nine machine learning and classification models were built and optimized. An ensemble model was built based on results from the individual models. All samples were randomly divided into two groups. One was used as training set, the other one for diagnostic performance assessment. RESULTS: Ensemble machine learning model correctly classified all cases and controls. Propanoic, lactic, gluconic, benzoic, oxalic, 2-hydroxy-3-methylbutyric, acetic, lauric, myristic and stearic acid and myo-inositol and mannose were selected as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal central nervous system anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is therefore a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the details of the most relevant metabolites and their respective biochemical pathways allow better understanding of the overall pathophysiology of affected pregnancies.


Assuntos
Biomarcadores/sangue , Doenças Fetais/diagnóstico , Feto/patologia , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Triagem Neonatal/métodos , Malformações do Sistema Nervoso/diagnóstico , Adulto , Estudos de Casos e Controles , Feminino , Doenças Fetais/sangue , Feto/metabolismo , Humanos , Recém-Nascido , Malformações do Sistema Nervoso/sangue , Projetos Piloto , Gravidez , Segundo Trimestre da Gravidez , Cuidado Pré-Natal , Estudos Prospectivos
17.
Prep Biochem Biotechnol ; 48(6): 474-482, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29932806

RESUMO

Analysis of the human placenta metabolome has great potential to advance the understanding of complicated pregnancies and deleterious fetal outcomes in remote populations, but samples preparation can present unique challenges. Herein, we introduce oven-drying as a simple and widely available method of sample preparation that will facilitate investigations of the placental metabolome from remote and under-studied populations. Placentae from complicated and uncomplicated pregnancies were prepared in three ways (oven-dried at 60 °C, fresh, lyophilized) for metabolome analysis via gas chromatography-mass spectrometry (GC-MS). Multiple computer models (e.g. PLS-DA, ANN) were employed to classify and determine if there was a difference in placentae metabolome and a group of metabolites with high variable importance in projection scores across the three preparations and by complicated vs. control groups. The analyses used herein were shown to be thorough and sensitive. Indeed, significant differences were detected in metabolomes of complicated vs. uncomplicated pregnancies; however, there were no statistical differences in the metabolome of placentae prepared by oven-drying vs. lyophilization vs. fresh placentae. Oven-drying is a viable sample preparation method for placentae intended for use in metabolite analysis via GC-MS. These results open many possibilities for researching metabolome patterns associated with fetal outcomes in remote and resource-poor communities worldwide.


Assuntos
Dessecação/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metaboloma , Placenta/metabolismo , Preservação de Tecido/métodos , Feminino , Liofilização , Temperatura Alta , Humanos , Modelos Biológicos , Gravidez , Complicações na Gravidez
18.
Surg Open Sci ; 20: 55-56, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38911058

RESUMO

Medical school clerkship grades are an important method for applicants to distinguish themselves when applying to residency programs. Given the lack of standardization among medical schools in the clerkship grading process, it has become more challenging for orthopaedic surgery residencies to ascertain the true value of surgery clerkship grades between applicants. This letter to the editor is a response to the article by Hoy et al., "Analysis of variability and trends in medical school clerkship grades," and offers further perspectives on the variability of surgery clerkship grading and its effect on applicants.

19.
bioRxiv ; 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39282314

RESUMO

The E3 ubiquitin ligase TRAIP associates with the replisome and helps this molecular machine deal with replication stress. Thus, TRAIP promotes DNA inter-strand crosslink repair by triggering the disassembly of CDC45-MCM2-7-GINS (CMG) helicases that have converged on these lesions. However, disassembly of single CMGs that have stalled temporarily would be deleterious, suggesting that TRAIP must be carefully regulated. Here, we demonstrate that human cells lacking the de-ubiquitylating enzyme USP37 are hypersensitive to topoisomerase poisons and other replication stress-inducing agents. We further show that TRAIP loss rescues the hypersensitivity of USP37 knockout cells to topoisomerase inhibitors. In Xenopus egg extracts depleted of USP37, TRAIP promotes premature CMG ubiquitylation and disassembly when converging replisomes stall. Finally, guided by AlphaFold-Multimer, we discovered that binding to CDC45 mediates USP37's response to topological stress. In conclusion, we propose that USP37 protects genome stability by preventing TRAIP-dependent CMG unloading when replication stress impedes timely termination.

20.
Metabolites ; 13(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36837853

RESUMO

Fetal growth restriction is an obstetrical pathological condition that causes high neonatal mortality and morbidity. The mechanisms of its onset are not completely understood. Metabolites were extracted from 493 placentas from non-complicated pregnancies in Hamilton Country, TN (USA), and analyzed by gas chromatography-mass spectrometry (GC-MS). Newborns were classified according to raw fetal weight (low birth weight (LBW; <2500 g) and non-low birth weight (Non-LBW; >2500 g)), and according to the calculated birth weight centile as it relates to gestational age (small for gestational age (SGA), large for gestational age (LGA), and adequate for gestational age (AGA)). Mothers of LBW infants had a lower pre-pregnancy weight (66.2 ± 17.9 kg vs. 73.4 ± 21.3 kg, p < 0.0001), a lower body mass index (BMI) (25.27 ± 6.58 vs. 27.73 ± 7.83, p < 0.001), and a shorter gestation age (246.4 ± 24.0 days vs. 267.2 ± 19.4 days p < 0.001) compared with non-LBW. Marital status, tobacco use, and fetus sex affected birth weight centile classification according to gestational age. Multivariate statistical comparisons of the extracted metabolomes revealed that asparagine, aspartic acid, deoxyribose, erythritol, glycerophosphocholine, tyrosine, isoleucine, serine, and lactic acid were higher in both SGA and LBW placentas, while taurine, ethanolamine, ß-hydroxybutyrate, and glycine were lower in both SGA and LBW. Several metabolic pathways are implicated in fetal growth restriction, including those related to the hypoxia response and amino-acid uptake and metabolism. Inflammatory pathways are also involved, suggesting that fetal growth restriction might share some mechanisms with preeclampsia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA