Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Radiat Oncol ; 17(1): 55, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35303919

RESUMO

PURPOSE: Previous work on Magnetic Resonance Imaging (MRI) only planning has been applied to limited treatment regions with a focus on male anatomy. This research aimed to validate the use of a hybrid multi-atlas synthetic computed tomography (sCT) generation technique from a MRI, using a female and male atlas, for MRI only radiation therapy treatment planning of rectum, anal canal, cervix and endometrial malignancies. PATIENTS AND METHODS: Forty patients receiving radiation treatment for a range of pelvic malignancies, were separated into male (n = 20) and female (n = 20) cohorts for the creation of gender specific atlases. A multi-atlas local weighted voting method was used to generate a sCT from a T1-weighted VIBE DIXON MRI sequence. The original treatment plans were copied from the CT scan to the corresponding sCT for dosimetric validation. RESULTS: The median percentage dose difference between the treatment plan on the CT and sCT at the ICRU reference point for the male cohort was - 0.4% (IQR of 0 to - 0.6), and - 0.3% (IQR of 0 to - 0.6) for the female cohort. The mean gamma agreement for both cohorts was > 99% for criteria of 3%/2 mm and 2%/2 mm. With dose criteria of 1%/1 mm, the pass rate was higher for the male cohort at 96.3% than the female cohort at 93.4%. MRI to sCT anatomical agreement for bone and body delineated contours was assessed, with a resulting Dice score of 0.91 ± 0.2 (mean ± 1 SD) and 0.97 ± 0.0 for the male cohort respectively; and 0.96 ± 0.0 and 0.98 ± 0.0 for the female cohort respectively. The mean absolute error in Hounsfield units (HUs) within the entire body for the male and female cohorts was 59.1 HU ± 7.2 HU and 53.3 HU ± 8.9 HU respectively. CONCLUSIONS: A multi-atlas based method for sCT generation can be applied to a standard T1-weighted MRI sequence for male and female pelvic patients. The implications of this study support MRI only planning being applied more broadly for both male and female pelvic sites. Trial registration This trial was registered in the Australian New Zealand Clinical Trials Registry (ANZCTR) ( www.anzctr.org.au ) on 04/10/2017. Trial identifier ACTRN12617001406392.


Assuntos
Imageamento por Ressonância Magnética , Planejamento da Radioterapia Assistida por Computador , Doenças Retais/radioterapia , Tomografia Computadorizada por Raios X , Neoplasias Uterinas/radioterapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica
2.
J Med Radiat Sci ; 69(1): 66-74, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34676994

RESUMO

INTRODUCTION: Assessing the use of a radiation therapy (RT) planning MRI performed in the treatment position (pMRI) on target volume delineation and effect on organ at risk dose for oropharyngeal cancer patients planned with diagnostic MRI (dMRI) and CT scan. METHODS: Diagnostic MRI scans were acquired for 26 patients in a neutral patient position using a 3T scanner (dMRI). Subsequent pMRI scans were acquired on the same scanner with a flat couch top and the patient in their immobilisation mask. Each series was rigidly registered to the patients planning CT scan and volumes were first completed with the CT/dMRI. The pMRI was then made available for volume modification. For the group with revised volumes, two IMRT plans were developed to demonstrate the impact of the modification. Image and registration quality was also evaluated. RESULTS: The pMRI registration led to the modification of target volumes for 19 of 26 participants. The pMRI target volumes were larger in absolute volume resulting in reduced capacity for organ sparing. Predominantly, modifications occurred for the primary gross tumour volume (GTVp) with a mean Dice Similarity Coefficient (DSC) of 0.7 and the resulting high risk planning target volume, a mean DSC of 0.89. Both MRIs scored similarly for image quality, with the pMRI demonstrating improved registration quality and efficiency. CONCLUSIONS: A pMRI provides improvement in registration efficiency, quality and a higher degree of oncologist confidence in target delineation. These results have led to a practice change within our department, where a pMRI is acquired for all eligible oropharyngeal cancer patients.


Assuntos
Órgãos em Risco , Planejamento da Radioterapia Assistida por Computador , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
3.
Phys Med Biol ; 62(22): 8566-8580, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-28976369

RESUMO

In MR only radiation therapy planning, generation of the tissue specific HU map directly from the MRI would eliminate the need of CT image acquisition and may improve radiation therapy planning. The aim of this work is to generate and validate substitute CT (sCT) scans generated from standard T2 weighted MR pelvic scans in prostate radiation therapy dose planning. A Siemens Skyra 3T MRI scanner with laser bridge, flat couch and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole pelvis MRI (1.6 mm 3D isotropic T2w SPACE sequence) was acquired. Patients received a routine planning CT scan. Co-registered whole pelvis CT and T2w MRI pairs were used as training images. Advanced tissue specific non-linear regression models to predict HU for the fat, muscle, bladder and air were created from co-registered CT-MRI image pairs. On a test case T2w MRI, the bones and bladder were automatically segmented using a novel statistical shape and appearance model, while other soft tissues were separated using an Expectation-Maximization based clustering model. The CT bone in the training database that was most 'similar' to the segmented bone was then transformed with deformable registration to create the sCT component of the test case T2w MRI bone tissue. Predictions for the bone, air and soft tissue from the separate regression models were successively combined to generate a whole pelvis sCT. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same IMRT dose plan was found to be [Formula: see text] (mean ± standard deviation) for 39 patients. The 3D Gamma pass rate was [Formula: see text] (2 mm/2%). The novel hybrid model is computationally efficient, generating an sCT in 20 min from standard T2w images for prostate cancer radiation therapy dose planning and DRR generation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Osso e Ossos/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Imagem Multimodal/métodos , Pelve/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia de Intensidade Modulada/métodos , Bexiga Urinária/efeitos da radiação
4.
Int J Radiat Oncol Biol Phys ; 93(5): 1144-53, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26581150

RESUMO

PURPOSE: To validate automatic substitute computed tomography CT (sCT) scans generated from standard T2-weighted (T2w) magnetic resonance (MR) pelvic scans for MR-Sim prostate treatment planning. PATIENTS AND METHODS: A Siemens Skyra 3T MR imaging (MRI) scanner with laser bridge, flat couch, and pelvic coil mounts was used to scan 39 patients scheduled for external beam radiation therapy for localized prostate cancer. For sCT generation a whole-pelvis MRI scan (1.6 mm 3-dimensional isotropic T2w SPACE [Sampling Perfection with Application optimized Contrasts using different flip angle Evolution] sequence) was acquired. Three additional small field of view scans were acquired: T2w, T2*w, and T1w flip angle 80° for gold fiducials. Patients received a routine planning CT scan. Manual contouring of the prostate, rectum, bladder, and bones was performed independently on the CT and MR scans. Three experienced observers contoured each organ on MRI, allowing interobserver quantification. To generate a training database, each patient CT scan was coregistered to their whole-pelvis T2w using symmetric rigid registration and structure-guided deformable registration. A new multi-atlas local weighted voting method was used to generate automatic contours and sCT results. RESULTS: The mean error in Hounsfield units between the sCT and corresponding patient CT (within the body contour) was 0.6 ± 14.7 (mean ± 1 SD), with a mean absolute error of 40.5 ± 8.2 Hounsfield units. Automatic contouring results were very close to the expert interobserver level (Dice similarity coefficient): prostate 0.80 ± 0.08, bladder 0.86 ± 0.12, rectum 0.84 ± 0.06, bones 0.91 ± 0.03, and body 1.00 ± 0.003. The change in monitor units between the sCT-based plans relative to the gold standard CT plan for the same dose prescription was found to be 0.3% ± 0.8%. The 3-dimensional γ pass rate was 1.00 ± 0.00 (2 mm/2%). CONCLUSIONS: The MR-Sim setup and automatic sCT generation methods using standard MR sequences generates realistic contours and electron densities for prostate cancer radiation therapy dose planning and digitally reconstructed radiograph generation.


Assuntos
Imageamento por Ressonância Magnética/métodos , Imagem Multimodal/métodos , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Tomografia Computadorizada por Raios X/métodos , Idoso , Osso e Ossos , Marcadores Fiduciais , Ouro , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Próstata , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioterapia de Intensidade Modulada , Reto , Bexiga Urinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA