Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; 298(10): 102419, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037968

RESUMO

Candida albicans (C. albicans) is a dimorphic commensal human fungal pathogen that can cause severe oropharyngeal candidiasis (oral thrush) in susceptible hosts. During invasive infection, C. albicans hyphae invade oral epithelial cells (OECs) and secrete candidalysin, a pore-forming cytolytic peptide that is required for C. albicans pathogenesis at mucosal surfaces. Candidalysin is produced in the hyphal invasion pocket and triggers cell damage responses in OECs. Candidalysin also activates multiple MAPK-based signaling events that collectively drive the production of downstream inflammatory mediators that coordinate downstream innate and adaptive immune responses. The activities of candidalysin are dependent on signaling through the epidermal growth factor receptor (EGFR). Here, we interrogated known EGFR-MAPK signaling intermediates for their roles mediating the OEC response to C. albicans infection. Using RNA silencing and pharmacological inhibition, we identified five key adaptors, including growth factor receptor-bound protein 2 (Grb2), Grb2-associated binding protein 1 (Gab1), Src homology and collagen (Shc), SH2-containing protein tyrosine phosphatase-2 (Shp2), and casitas B-lineage lymphoma (c-Cbl). We determined that all of these signaling effectors were inducibly phosphorylated in response to C. albicans. These phosphorylation events occurred in a candidalysin-dependent manner and additionally required EGFR phosphorylation, matrix metalloproteinases (MMPs), and cellular calcium flux to activate a complete OEC response to fungal infection. Of these, Gab1, Grb2, and Shp2 were the dominant drivers of ERK1/2 activation and the subsequent production of downstream innate-acting cytokines. Together, these results identify the key adaptor proteins that drive the EGFR signaling mechanisms that underlie oral epithelial responses to C. albicans.


Assuntos
Candida albicans , Candidíase Bucal , Receptores ErbB , Proteínas Fúngicas , Mucosa Bucal , Humanos , Candida albicans/metabolismo , Candida albicans/patogenicidade , Citocinas/metabolismo , Receptores ErbB/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Candidíase Bucal/metabolismo , Candidíase Bucal/microbiologia , Mucosa Bucal/metabolismo , Mucosa Bucal/microbiologia , Células Epiteliais/metabolismo , Células Epiteliais/microbiologia
2.
PLoS Pathog ; 17(9): e1009884, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34506615

RESUMO

Vulvovaginal candidiasis (VVC), caused primarily by the human fungal pathogen Candida albicans, results in significant quality-of-life issues for women worldwide. Candidalysin, a toxin derived from a polypeptide (Ece1p) encoded by the ECE1 gene, plays a crucial role in driving immunopathology at the vaginal mucosa. This study aimed to determine if expression and/or processing of Ece1p differs across C. albicans isolates and whether this partly underlies differential pathogenicity observed clinically. Using a targeted sequencing approach, we determined that isolate 529L harbors a similarly expressed, yet distinct Ece1p isoform variant that encodes for a predicted functional candidalysin; this isoform was conserved amongst a collection of clinical isolates. Expression of the ECE1 open reading frame (ORF) from 529L in an SC5314-derived ece1Δ/Δ strain resulted in significantly reduced vaginopathogenicity as compared to an isogenic control expressing a wild-type (WT) ECE1 allele. However, in vitro challenge of vaginal epithelial cells with synthetic candidalysin demonstrated similar toxigenic activity amongst SC5314 and 529L isoforms. Creation of an isogenic panel of chimeric strains harboring swapped Ece1p peptides or HiBiT tags revealed reduced secretion with the ORF from 529L that was associated with reduced virulence. A genetic survey of 78 clinical isolates demonstrated a conserved pattern between Ece1p P2 and P3 sequences, suggesting that substrate specificity around Kex2p-mediated KR cleavage sites involved in protein processing may contribute to differential pathogenicity amongst clinical isolates. Therefore, we present a new mechanism for attenuation of C. albicans virulence at the ECE1 locus.


Assuntos
Candida albicans/genética , Candidíase Vulvovaginal/microbiologia , Proteínas Fúngicas/genética , Alelos , Animais , Candida albicans/patogenicidade , Feminino , Variação Genética , Humanos , Camundongos , Virulência
3.
Cell Microbiol ; 23(10): e13371, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34085369

RESUMO

Candida albicans is a common opportunistic fungal pathogen that causes a wide range of infections from superficial mucosal to hematogenously disseminated candidiasis. The hyphal form plays an important role in the pathogenic process by invading epithelial cells and causing tissue damage. Notably, the secretion of the hyphal toxin candidalysin is essential for both epithelial cell damage and activation of mucosal immune responses. However, the mechanism of candidalysin-induced cell death remains unclear. Here, we examined the induction of cell death by candidalysin in oral epithelial cells. Fluorescent imaging using healthy/apoptotic/necrotic cell markers revealed that candidalysin causes a rapid and marked increase in the population of necrotic rather than apoptotic cells in a concentration dependent manner. Activation of a necrosis-like pathway was confirmed since C. albicans and candidalysin failed to activate caspase-8 and -3, or the cleavage of poly (ADP-ribose) polymerase. Furthermore, oral epithelial cells treated with candidalysin showed rapid production of reactive oxygen species, disruption of mitochondria activity and mitochondrial membrane potential, ATP depletion and cytochrome c release. Collectively, these data demonstrate that oral epithelial cells respond to the secreted fungal toxin candidalysin by triggering numerous cellular stress responses that induce necrotic death. TAKE AWAYS: Candidalysin secreted from Candida albicans causes epithelial cell stress. Candidalysin induces calcium influx and oxidative stress in host cells. Candidalysin induces mitochondrial dysfunction, ATP depletion and epithelial necrosis. The toxicity of candidalysin is mediated from the epithelial cell surface.


Assuntos
Candidíase , Proteínas Fúngicas , Candida albicans , Células Epiteliais , Humanos , Necrose
4.
Nature ; 532(7597): 64-8, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27027296

RESUMO

Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.


Assuntos
Candida albicans/metabolismo , Candida albicans/patogenicidade , Citotoxinas/metabolismo , Proteínas Fúngicas/toxicidade , Micotoxinas/toxicidade , Fatores de Virulência/metabolismo , Cálcio/metabolismo , Candida albicans/imunologia , Candidíase/metabolismo , Candidíase/microbiologia , Candidíase/patologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Citotoxinas/genética , Citotoxinas/toxicidade , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/patologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Humanos , Mucosa/microbiologia , Mucosa/patologia , Micotoxinas/genética , Micotoxinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Virulência/efeitos dos fármacos , Fatores de Virulência/genética , Fatores de Virulência/toxicidade
5.
Semin Cell Dev Biol ; 89: 58-70, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29501618

RESUMO

The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.


Assuntos
Candida albicans/imunologia , Imunidade Inata , Micoses/imunologia , Candida albicans/patogenicidade , Citocinas/biossíntese , Citocinas/imunologia , Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Humanos , Hifas/imunologia , Hifas/patogenicidade , Mucosa/imunologia , Mucosa/microbiologia , Micoses/microbiologia
6.
Immunology ; 162(1): 11-16, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880925

RESUMO

As our understanding of mycology progresses, the impact of fungal microbes on human health has become increasingly evident. Candida albicans is a common commensal fungus that gives rise to local and systemic infections, particularly in immunocompromised patients where it can result in mortality. However, C. albicans has also been quietly linked with a variety of inflammatory disorders, to which it has traditionally been considered incidental; recent studies may now provide new aspects of these relationships for further consideration. This review provides a novel perspective on the impact of C. albicans and its peptide toxin, candidalysin, on human health, exploring their contributions to pathology within a variety of diseases.


Assuntos
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Inflamação/microbiologia , Neoplasias/microbiologia , Animais , Candidíase/microbiologia , Humanos
7.
Crit Rev Microbiol ; 47(1): 91-111, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33482069

RESUMO

Candida albicans is a common fungus of the human microbiota. While generally a harmless commensal in healthy individuals, several factors can lead to its overgrowth and cause a range of complications within the host, from localized superficial infections to systemic life-threatening disseminated candidiasis. A major virulence factor of C. albicans is its ability to form biofilms, a closely packed community of cells that can grow on both abiotic and biotic substrates, including implanted medical devices and mucosal surfaces. These biofilms are extremely hard to eradicate, are resistant to conventional antifungal treatment and are associated with high morbidity and mortality rates, making biofilm-associated infections a major clinical challenge. Here, we review the current knowledge of the processes involved in C. albicans biofilm formation and development, including the central processes of adhesion, extracellular matrix production and the transcriptional network that regulates biofilm development. We also consider the advantages of the biofilm lifestyle and explore polymicrobial interactions within multispecies biofilms that are formed by C. albicans and selected microbial species.


Assuntos
Biofilmes , Candida albicans/fisiologia , Candidíase/microbiologia , Animais , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase/tratamento farmacológico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
8.
J Immunol ; 201(2): 627-634, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29891557

RESUMO

Protection against microbial infection by the induction of inflammation is a key function of the IL-1 superfamily, including both classical IL-1 and the new IL-36 cytokine families. Candida albicans is a frequent human fungal pathogen causing mucosal infections. Although the initiators and effectors important in protective host responses to C. albicans are well described, the key players in driving these responses remain poorly defined. Recent work has identified a central role played by IL-1 in inducing innate Type-17 immune responses to clear C. albicans infections. Despite this, lack of IL-1 signaling does not result in complete loss of immunity, indicating that there are other factors involved in mediating protection to this fungus. In this study, we identify IL-36 cytokines as a new player in these responses. We show that C. albicans infection of the oral mucosa induces the production of IL-36. As with IL-1α/ß, induction of epithelial IL-36 depends on the hypha-associated peptide toxin Candidalysin. Epithelial IL-36 gene expression requires p38-MAPK/c-Fos, NF-κB, and PI3K signaling and is regulated by the MAPK phosphatase MKP1. Oral candidiasis in IL-36R-/- mice shows increased fungal burdens and reduced IL-23 gene expression, indicating a key role played by IL-36 and IL-23 in innate protective responses to this fungus. Strikingly, we observed no impact on gene expression of IL-17 or IL-17-dependent genes, indicating that this protection occurs via an alternative pathway to IL-1-driven immunity. Thus, IL-1 and IL-36 represent parallel epithelial cell-driven protective pathways in immunity to oral C. albicans infection.


Assuntos
Candida albicans/imunologia , Candidíase/imunologia , Proteínas Fúngicas/metabolismo , Interleucina-17/metabolismo , Interleucina-1/metabolismo , Mucosa Bucal/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular , Regulação da Expressão Gênica , Imunidade Inata , Interleucina-23/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucosa Bucal/microbiologia , Receptores de Interleucina-1/genética , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Infect Immun ; 86(2)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29109176

RESUMO

Unlike other forms of candidiasis, vulvovaginal candidiasis, caused primarily by the fungal pathogen Candida albicans, is a disease of immunocompetent and otherwise healthy women. Despite its prevalence, the fungal factors responsible for initiating symptomatic infection remain poorly understood. One of the hallmarks of vaginal candidiasis is the robust recruitment of neutrophils to the site of infection, which seemingly do not clear the fungus, but rather exacerbate disease symptomatology. Candidalysin, a newly discovered peptide toxin secreted by C. albicans hyphae during invasion, drives epithelial damage, immune activation, and phagocyte attraction. Therefore, we hypothesized that Candidalysin is crucial for vulvovaginal candidiasis immunopathology. Anti-Candida immune responses are anatomical-site specific, as effective gastrointestinal, oral, and vaginal immunities are uniquely compartmentalized. Thus, we aimed to identify the immunopathologic role of Candidalysin and downstream signaling events at the vaginal mucosa. Microarray analysis of C. albicans-infected human vaginal epithelium in vitro revealed signaling pathways involved in epithelial damage responses, barrier repair, and leukocyte activation. Moreover, treatment of A431 vaginal epithelial cells with Candidalysin induced dose-dependent proinflammatory cytokine responses (including interleukin 1α [IL-1α], IL-1ß, and IL-8), damage, and activation of c-Fos and mitogen-activated protein kinase (MAPK) signaling, consistent with fungal challenge. Mice intravaginally challenged with C. albicans strains deficient in Candidalysin exhibited no differences in colonization compared to isogenic controls. However, significant decreases in neutrophil recruitment, damage, and proinflammatory cytokine expression were observed with these strains. Our findings demonstrate that Candidalysin is a key hypha-associated virulence determinant responsible for the immunopathogenesis of C. albicans vaginitis.


Assuntos
Candida albicans/patogenicidade , Células Epiteliais/microbiologia , Proteínas Fúngicas/metabolismo , Mucosa/microbiologia , Animais , Candidíase Vulvovaginal/imunologia , Candidíase Vulvovaginal/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Proteínas Fúngicas/farmacologia , Humanos , Camundongos , Mucosa/patologia , Infiltração de Neutrófilos/imunologia , Transdução de Sinais , Vagina/imunologia , Vagina/metabolismo , Vagina/microbiologia , Fatores de Virulência
10.
Nucleic Acids Res ; 44(20): 9698-9709, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27458202

RESUMO

In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2ß that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2ß mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2ß mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2ß acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Biossíntese de Proteínas , Proteínas Repressoras/metabolismo , Sequência de Aminoácidos , Sequência Conservada , Fator de Iniciação 2B em Eucariotos/química , Fator de Iniciação 2B em Eucariotos/genética , Evolução Molecular , Inibidores de Dissociação do Nucleotídeo Guanina/química , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Proteínas Repressoras/química , Leveduras/efeitos dos fármacos , Leveduras/genética , Leveduras/metabolismo
12.
PLoS Pathog ; 11(1): e1004630, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25617770

RESUMO

The opportunistic human fungal pathogen, Candida albicans, undergoes morphological and transcriptional adaptation in the switch from commensalism to pathogenicity. Although previous gene-knockout studies have identified many factors involved in this transformation, it remains unclear how these factors are regulated to coordinate the switch. Investigating morphogenetic control by post-translational phosphorylation has generated important regulatory insights into this process, especially focusing on coordinated control by the cyclin-dependent kinase Cdc28. Here we have identified the Fkh2 transcription factor as a regulatory target of both Cdc28 and the cell wall biosynthesis kinase Cbk1, in a role distinct from its conserved function in cell cycle progression. In stationary phase yeast cells 2D gel electrophoresis shows that there is a diverse pool of Fkh2 phospho-isoforms. For a short window on hyphal induction, far before START in the cell cycle, the phosphorylation profile is transformed before reverting to the yeast profile. This transformation does not occur when stationary phase cells are reinoculated into fresh medium supporting yeast growth. Mass spectrometry and mutational analyses identified residues phosphorylated by Cdc28 and Cbk1. Substitution of these residues with non-phosphorylatable alanine altered the yeast phosphorylation profile and abrogated the characteristic transformation to the hyphal profile. Transcript profiling of the phosphorylation site mutant revealed that the hyphal phosphorylation profile is required for the expression of genes involved in pathogenesis, host interaction and biofilm formation. We confirmed that these changes in gene expression resulted in corresponding defects in pathogenic processes. Furthermore, we identified that Fkh2 interacts with the chromatin modifier Pob3 in a phosphorylation-dependent manner, thereby providing a possible mechanism by which the phosphorylation of Fkh2 regulates its specificity. Thus, we have discovered a novel cell cycle-independent phospho-regulatory event that subverts a key component of the cell cycle machinery to a role in the switch from commensalism to pathogenicity.


Assuntos
Candida albicans/crescimento & desenvolvimento , Candida albicans/patogenicidade , Ciclo Celular/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Candida albicans/genética , Candida albicans/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Interações Hospedeiro-Patógeno , Hifas/genética , Hifas/crescimento & desenvolvimento , Análise em Microsséries , Fosforilação , Processamento de Proteína Pós-Traducional
13.
J Infect Dis ; 209(11): 1816-26, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24357630

RESUMO

BACKGROUND: The ability of epithelial cells (ECs) to discriminate between commensal and pathogenic microbes is essential for healthy living. Key to these interactions are mucosal epithelial responses to pathogen-induced damage. METHODS: Using reconstituted oral epithelium, we assessed epithelial gene transcriptional responses to Candida albicans infection by microarray. Signal pathway activation was monitored by Western blotting and transcription factor enzyme-linked immunosorbent assay, and the role of these pathways in C. albicans-induced damage protection was determined using chemical inhibitors. RESULTS: Transcript profiling demonstrated early upregulation of epithelial genes involved in immune responses. Many of these genes constituted components of signaling pathways, but only NF-κB, MAPK, and PI3K/Akt pathways were functionally activated. We demonstrate that PI3K/Akt signaling is independent of NF-κB and MAPK signaling and plays a key role in epithelial immune activation and damage protection via mammalian target of rapamycin (mTOR) activation. CONCLUSIONS: PI3K/Akt/mTOR signaling may play a critical role in protecting epithelial cells from damage during mucosal fungal infections independent of NF-κB or MAPK signaling.


Assuntos
Candida albicans/fisiologia , Células Epiteliais/microbiologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Hifas , Fosfatidilinositol 3-Quinases/genética , Análise Serial de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/imunologia , Serina-Treonina Quinases TOR/genética , Transcriptoma
14.
Langmuir ; 30(49): 14999-5008, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25409484

RESUMO

A novel, fast, and easy mechano-chemistry-based (dry milling) method has been developed to exfoliate graphene with hydrophobic drugs generating few-layer graphene mesosheets (< 10 nm in thickness and ∼1 µm in width). The electronic properties of the graphitic structure were partially preserved after the milling treatment compared with graphene oxide prepared by Hummers' method. Several characterization techniques such as thermogravimetric analysis, Raman spectroscopy, atomic force microscopy, electron microscopy, and molecular dynamics simulation were used to characterize this material. The drug-exfoliated mesosheets were pharmacologically inactive, offering a new approach for making water-soluble few-layer graphene mesosheets upon dry milling with hydrophobic drugs, mainly used as exfoliating agents.


Assuntos
Anfotericina B/farmacologia , Grafite/química , Água/química , Antibacterianos/farmacologia , Interações Hidrofóbicas e Hidrofílicas/efeitos dos fármacos , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Solubilidade , Propriedades de Superfície
15.
mBio ; 15(8): e0335123, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-38953356

RESUMO

Candida albicans causes millions of mucosal infections in humans annually. Hyphal overgrowth on mucosal surfaces is frequently associated with tissue damage caused by candidalysin, a secreted peptide toxin that destabilizes the plasma membrane of host cells thereby promoting disease and immunopathology. Candidalysin was first identified in C. albicans strain SC5314, but recent investigations have revealed candidalysin "variants" of differing amino acid sequence in isolates of C. albicans, and the related species C. dubliniensis, and C tropicalis, suggesting that sequence variation among candidalysins may be widespread in natural populations of these Candida species. Here, we analyzed ECE1 gene sequences from 182 C. albicans isolates, 10 C. dubliniensis isolates, and 78 C. tropicalis isolates and identified 10, 3, and 2 candidalysin variants in these species, respectively. Application of candidalysin variants to epithelial cells revealed differences in the ability to cause cellular damage, changes in metabolic activity, calcium influx, MAPK signalling, and cytokine secretion, while biophysical analyses indicated that variants exhibited differences in their ability to interact with and permeabilize a membrane. This study identifies candidalysin variants with differences in biological activity that are present in medically relevant Candida species. IMPORTANCE: Fungal infections are a significant burden to health. Candidalysin is a toxin produced by Candida albicans that damages host tissues, facilitating infection. Previously, we demonstrated that candidalysins exist in the related species C. dubliniensis and C. tropicalis, thereby identifying these molecules as a toxin family. Recent genomic analyses have highlighted the presence of a small number of candidalysin "variant" toxins, which have different amino acid sequences to those originally identified. Here, we screened genome sequences of isolates of C. albicans, C. dubliniensis, and C. tropicalis and identified candidalysin variants in all three species. When applied to epithelial cells, candidalysin variants differed in their ability to cause damage, activate intracellular signaling pathways, and induce innate immune responses, while biophysical analysis revealed differences in the ability of candidalysin variants to interact with lipid bilayers. These findings suggest that intraspecies variation in candidalysin amino acid sequence may influence fungal pathogenicity.


Assuntos
Candida albicans , Células Epiteliais , Proteínas Fúngicas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Humanos , Candida albicans/genética , Candida albicans/efeitos dos fármacos , Células Epiteliais/microbiologia , Candidíase/microbiologia , Candidíase/imunologia , Sequência de Aminoácidos , Variação Genética , Candida/genética , Candida/patogenicidade , Candida tropicalis/genética , Candida tropicalis/metabolismo
16.
Nat Microbiol ; 9(3): 669-683, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38388771

RESUMO

The opportunistic fungal pathogen Candida albicans damages host cells via its peptide toxin, candidalysin. Before secretion, candidalysin is embedded in a precursor protein, Ece1, which consists of a signal peptide, the precursor of candidalysin and seven non-candidalysin Ece1 peptides (NCEPs), and is found to be conserved in clinical isolates. Here we show that the Ece1 polyprotein does not resemble the usual precursor structure of peptide toxins. C. albicans cells are not susceptible to their own toxin, and single NCEPs adjacent to candidalysin are sufficient to prevent host cell toxicity. Using a series of Ece1 mutants, mass spectrometry and anti-candidalysin nanobodies, we show that NCEPs play a role in intracellular Ece1 folding and candidalysin secretion. Removal of single NCEPs or modifications of peptide sequences cause an unfolded protein response (UPR), which in turn inhibits hypha formation and pathogenicity in vitro. Our data indicate that the Ece1 precursor is not required to block premature pore-forming toxicity, but rather to prevent intracellular auto-aggregation of candidalysin sequences.


Assuntos
Proteínas Fúngicas , Micotoxinas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Micotoxinas/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo
17.
Cell Rep ; 42(10): 113240, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37819761

RESUMO

The fungal pathogen Candida albicans is linked to chronic brain diseases such as Alzheimer's disease (AD), but the molecular basis of brain anti-Candida immunity remains unknown. We show that C. albicans enters the mouse brain from the blood and induces two neuroimmune sensing mechanisms involving secreted aspartic proteinases (Saps) and candidalysin. Saps disrupt tight junction proteins of the blood-brain barrier (BBB) to permit fungal brain invasion. Saps also hydrolyze amyloid precursor protein (APP) into amyloid ß (Aß)-like peptides that bind to Toll-like receptor 4 (TLR4) and promote fungal killing in vitro while candidalysin engages the integrin CD11b (Mac-1) on microglia. Recognition of Aß-like peptides and candidalysin promotes fungal clearance from the brain, and disruption of candidalysin recognition through CD11b markedly prolongs C. albicans cerebral mycosis. Thus, C. albicans is cleared from the brain through innate immune mechanisms involving Saps, Aß, candidalysin, and CD11b.


Assuntos
Antígeno CD11b , Microglia , Micoses , Receptor 4 Toll-Like , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/microbiologia , Peptídeos beta-Amiloides/metabolismo , Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Microglia/metabolismo , Microglia/microbiologia , Micoses/genética , Micoses/metabolismo , Receptor 4 Toll-Like/metabolismo , Antígeno CD11b/metabolismo
18.
Pathogens ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35456133

RESUMO

Fungal infections kill ~1 [...].

19.
Methods Mol Biol ; 2542: 163-176, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36008664

RESUMO

In 2016, the first peptide toxin in any human fungal pathogen was identified. It was discovered in Candida albicans and was named candidalysin. Candidalysin is an amphipathic cationic peptide that damages cell membranes. Like most lytic peptides, candidalysin shows alpha-helical secondary structure. As the helicity and the membrane lytic activity of candidalysin are key factors for pathogenicity, here we describe in vitro approaches to monitor both its membrane-lytic function and the secondary structure. First, membrane permeabilization activity of candidalysin is measured in real time by direct electrical recording. Second, the secondary structure and helicity of candidalysin are determined by circular dichroism spectroscopy. These biophysical methods provide a means to characterize the activity and physical properties of candidalysin in vitro and will be useful in determining the structural and functional features of candidalysin and other similar cationic membrane-active peptides.


Assuntos
Proteínas Fúngicas , Micotoxinas , Candida albicans/metabolismo , Dicroísmo Circular , Proteínas Fúngicas/metabolismo , Humanos , Micotoxinas/metabolismo , Peptídeos/metabolismo , Virulência
20.
mBio ; 13(1): e0351021, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35073742

RESUMO

Candidalysin is the first cytolytic peptide toxin identified in any human fungal pathogen. Candidalysin is secreted by Candida albicans and is critical for driving infection and host immune responses in several model systems. However, Candida infections are also caused by non-C. albicans species. Here, we identify and characterize orthologs of C. albicans candidalysin in C. dubliniensis and C. tropicalis. The candidalysins have different amino acid sequences, are amphipathic, and adopt a predominantly α-helical secondary structure in solution. Comparative functional analysis demonstrates that each candidalysin causes epithelial damage and calcium influx and activates intracellular signaling pathways and cytokine secretion. Importantly, C. dubliniensis and C. tropicalis candidalysins have higher damaging and activation potential than C. albicans candidalysin and exhibit more rapid membrane binding and disruption, although both fungal species cause less damage to epithelial cells than C. albicans. This study identifies the first family of peptide cytolysins in human-pathogenic fungi. IMPORTANCE Pathogenic fungi kill an estimated 1.5 million people every year. Recently, we discovered that the fungal pathogen Candida albicans secretes a peptide toxin called candidalysin during mucosal infection. Candidalysin causes damage to host cells, a process that supports disease progression. However, fungal infections are also caused by Candida species other than C. albicans. In this work, we identify and characterize two additional candidalysin toxins present in the related fungal pathogens C. dubliniensis and C. tropicalis. While the three candidalysins have different amino acid sequences, all three toxins are α-helical and amphipathic. Notably, the candidalysins from C. dubliniensis and C. tropicalis are more potent at inducing cell damage, calcium influx, mitogen-activated protein kinase signaling, and cytokine responses than C. albicans candidalysin, with the C. dubliniensis candidalysin having the most rapid membrane binding kinetics. These observations identify the candidalysins as the first family of peptide toxins in human-pathogenic fungi.


Assuntos
Micotoxinas , Humanos , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo , Candida albicans/metabolismo , Candida tropicalis , Peptídeos/metabolismo , Citocinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA