Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 354: 120128, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382427

RESUMO

The global increase in harmful algal blooms (HABs) has become a growing concern over the years, and New York State (NYS) is no exception. The Finger Lakes region in NYS has been identified as a hotspot for HABs, with Cayuga Lake having the highest number of blooms reported. The Cayuga Lake HABs Monitoring Program has been tracking cHABs (dominant bloom taxa, chlorophyll A, and microcystin levels) since 2018. However, limited research has been conducted on the microbiome of HABs in this region. In this study, the microbiome of HABs in the Cayuga Lake was surveyed and compared with non-HAB baseline samples. Using 16S rDNA community analysis, common bloom-forming cyanobacteria, were identified, with Microcystis being the dominant taxa in high toxin blooms. Further, this study evaluated the ability of Microcystis mcyA qPCR to detect elevated levels of potential toxigenic Microcystis in water samples using both benchtop and handheld qPCR devices. The results showed good performance of the qPCR assay as a screening for high toxin versus low/no toxin blooms. Additionally, the handheld qPCR device holds potential for in-field rapid (<1 h) screenings for high toxin blooms. This study provides insights into the microbiome of HABs in Cayuga Lake and offers a potential tool for rapid screening of high toxin blooms.


Assuntos
Microbiota , Microcystis , Lagos/microbiologia , Clorofila A , Proliferação Nociva de Algas , New York , Microcystis/genética , Microcistinas/genética
2.
Microb Ecol ; 82(2): 429-441, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33410936

RESUMO

Peatland microbial community composition varies with respect to a range of biological and physicochemical variables. While the extent of peat degradation (humification) has been linked to microbial community composition along vertical stratification gradients within peatland sites, across-site variations have been relatively unexplored. In this study, we compared microbial communities across ten pristine Sphagnum-containing peatlands in the Adirondack Mountains, NY, which represented three different peat types-humic fen peat, humic bog peat, and fibric bog peat. Using 16S amplicon sequencing and network correlation analysis, we demonstrate that microbial community composition is primarily linked to peat type, and that distinct taxa networks distinguish microbial communities in each type. Shotgun metagenomic sequencing of the active water table region (mesotelm) from two Sphagnum-dominated bogs-one with fibric peat and one with humic peat-revealed differences in primary carbon degradation pathways, with the fibric peat being dominated by carbohydrate metabolism and hydrogenotrophic methanogenesis, and the humic peat being dominated by aliphatic carbon metabolism and aceticlastic methanogenesis. Our results suggest that peat humification is a major factor driving microbial community dynamics across peatland ecosystems.


Assuntos
Microbiota , Sphagnopsida , Carbono , Solo , Áreas Alagadas
3.
Appl Environ Microbiol ; 86(23)2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-32948519

RESUMO

Methanotrophic microorganisms are characterized by their ability to oxidize methane. Globally they have a significant impact on methane emissions by attenuating net methane fluxes to the atmosphere in natural and engineered systems, though the populations are dynamic in their activity level in soils and waters. Methanotrophs oxidize methane using methane monooxygenase (MMO) enzymes, and selected subunit genes of the most common MMOs, specifically pmoA and mmoX, are used as biomarkers for the presence and abundance of populations of bacterial methanotrophs. The relative expression of these biomarker genes is dependent on copper-to-biomass ratios. Empirically derived quantitative relationships between methane oxidation biomarker transcript amounts and methanotrophic activity could facilitate determination of methane oxidation rates. In this study, pure cultures of a model type II methanotroph, Methylosinus trichosporium OB3b, were grown in hollow-fiber membrane bioreactors (HFMBR) under different steady-state methane oxidation conditions. Methanotroph biomass (DNA based) and methane oxidation biomarker mRNA transcript amounts were determined using quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR), respectively. Under both copper-present and copper-limited conditions, per-cell pmoA mRNA transcript levels positively correlated with measured per-cell methane oxidation rates across 3 orders of magnitude. These correlations, if maintained across different methanotrophs, could prove valuable for inferring in situ oxidation rates of methanotrophs and understanding the dynamics of their impact on net methane emissions.IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane and have an impact on global net methane emissions. The genes pmoA and mmoX are used as biomarkers for bacterial methanotrophs. Quantitative relationships between transcript amounts of these genes and methane oxidation rates could facilitate estimation of methanotrophic activity. In this study, a strong correlation was observed between per-cell pmoA transcript levels and per-cell methane oxidation rates for pure cultures of the aerobic methanotroph M. trichosporium OB3b grown in bioreactors. If similar relationships exist across different methanotrophs, they could prove valuable for inferring in situ oxidation rates of methanotrophs and better understanding their impact on net methane emissions.


Assuntos
Proteínas de Bactérias/metabolismo , Marcadores Genéticos , Metano/metabolismo , Methylosinus trichosporium/genética , Oxigenases/metabolismo , Transcrição Gênica , Methylosinus trichosporium/enzimologia
4.
Environ Sci Technol ; 52(12): 6854-6863, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29750518

RESUMO

Given the challenges facing the economically favorable production of products from microalgae, understanding factors that might impact productivity rates including growth rates and accumulation of desired products, for example, triacylglycerols (TAG) for biodiesel feedstock, remains critical. Although operational parameters such as media composition and reactor design can clearly effect growth rates, the role of microbe-microbe interactions is just beginning to be elucidated. In this study an oleaginous marine algae Chlorella spp. C596 culture is shown to be better described as a microbial community. Perturbations to this microbial community showed a significant impact on phenotypes including sustained differences in growth rate and TAG accumulation of 2.4 and 2.5 fold, respectively. Characterization of the associated community using Illumina 16S rRNA amplicon and random shotgun transcriptomic analyses showed that the fast growth rate correlated with two specific bacterial species ( Ruegeria and Rhodobacter spp). The transcriptomic response of the Chlorella species revealed that the slower growing algal consortium C596-S1 upregulated genes associated with photosynthesis and resource scavenging and decreased the expression of genes associated with transcription and translation relative to the initial C596-R1. Our studies advance the appreciation of the effects microbiomes can have on algal growth in bioreactors and suggest that symbiotic interactions are involved in a range of critical processes including nitrogen, carbon cycling, and oxidative stress.


Assuntos
Chlorella , Microalgas , Microbiota , Biocombustíveis , Lipídeos , Fenótipo , RNA Ribossômico 16S , Transcriptoma
5.
Environ Microbiol ; 17(6): 1977-90, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25389064

RESUMO

Understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. Using non-denaturing separations and mass spectrometry identification, in combination with a colorimetric screen for chelated Fe(III)-NTA reduction with NADH as electron donor, we have identified proteins from the D. reducens proteome not previously characterized as iron reductases. Their function was confirmed by heterologous expression in Escherichia coli. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. The proteins identified are NADH : flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase flavin adenine dinucleotide/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble protein fraction, suggesting a type of membrane association, although PSORTb predicts both proteins are cytoplasmic. This study is the first functional proteomic analysis of D. reducens and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.


Assuntos
Desulfotomaculum/metabolismo , FMN Redutase/metabolismo , Compostos Férricos/metabolismo , Metais/metabolismo , Desulfotomaculum/genética , Escherichia coli/genética , Escherichia coli/metabolismo , NAD/metabolismo , Oxirredução , Proteoma/metabolismo , Proteômica
6.
Biochem Biophys Res Commun ; 467(3): 503-8, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26454174

RESUMO

Desulfotomaculum reducens MI-1 is a Firmicute strain capable of reducing a variety of heavy metal ions and has a great potential in heavy metal bioremediation. We recently identified Dred_2421 as a potential iron reductase through proteomic study of D. reducens. The current study examines its iron-reduction mechanism. Dred_2421, like its close homolog from Escherichia coli (2, 4-dienoyl-CoA reductase), has an FMN-binding N-terminal domain (NTD), an FAD-binding C-terminal domain (CTD), and a 4Fe-4S cluster between the two domains. To understand the mechanism of the iron-reduction activity and the role of each domain, we generated a series of variants for each domain and investigated their iron-reduction activity. Our results suggest that CTD is the main contributor of the iron-reduction activity, and that NTD and the 4Fe-4S cluster are not directly involved in such activity. This study provides a mechanistic understanding of the iron-reductase activity of Dred_2421 and may also help to elucidate other physiological activities this enzyme may have.


Assuntos
Desulfotomaculum/enzimologia , FMN Redutase/metabolismo , FMN Redutase/genética
7.
Appl Microbiol Biotechnol ; 99(5): 2313-27, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25467924

RESUMO

To better understand the quantitative relationships between messenger RNA (mRNA) and protein biomarkers relevant to bioremediation, we quantified and compared respiration-associated gene products in an anaerobic syntrophic community. Respiration biomarkers for Dehalococcoides, an organohalide reducer, and Methanospirillum, a hydrogenotrophic methanogen, were quantified via qRT-PCR for mRNA and multiple reaction monitoring (MRM) of proteotypic peptides for protein. mRNA transcripts of the Dehalococcoides reductive dehalogenases PceA, TceA, and DMC1545, and hydrogenase HupL, as well as the Methanospirillum oxidoreductases MvrD and FrcA were shown to be similarly regulated with respect to their temporal responses to substrate addition. However, MvrD was two orders of magnitude lower in mRNA abundance. Per cell, Dehalococcoides protein biomarkers quantified were more abundant than Methanospirillum proteins. Comparing mRNA with protein abundance, poor correlations were observed between mRNA transcript levels and the net protein produced. For example, Dehalococcoides HupL and TceA transcripts were similarly abundant though TceA was far more abundant at the protein level (167 ± 121 vs. 1095 ± 337 proteins per cell, respectively). In Methanospirillum, MvrD maintained comparable per-cell protein abundance to FrcA (42 ± 14 vs. 60 ± 1 proteins per cell, respectively) despite the significantly lower transcript levels. Though no variability in protein decay rates was observed, the mRNA translation rate quantified for TceA was greater than the other Dehalococcoides targets monitored. These data suggest that there is considerable variation in the relationship between mRNA abundance and protein production both across transcripts within an organism and across organisms. This highlights the importance of empirically based studies for interpreting biomarker levels in environmentally relevant organisms.


Assuntos
Proteínas de Bactérias/análise , Biomarcadores/análise , Biotransformação , Chloroflexi/metabolismo , Perfilação da Expressão Gênica , Methanospirillum/metabolismo , RNA Mensageiro/análise , Anaerobiose , Proteínas de Bactérias/genética , Chloroflexi/genética , Methanospirillum/genética , Consórcios Microbianos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real
8.
Appl Environ Microbiol ; 80(19): 6062-72, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063656

RESUMO

A cDNA-microarray was designed and used to monitor the transcriptomic profile of Dehalococcoides mccartyi strain 195 (in a mixed community) respiring various chlorinated organics, including chloroethenes and 2,3-dichlorophenol. The cultures were continuously fed in order to establish steady-state respiration rates and substrate levels. The organization of array data into a clustered heat map revealed two major experimental partitions. This partitioning in the data set was further explored through principal component analysis. The first two principal components separated the experiments into those with slow (1.6±0.6 µM Cl-/h)- and fast (22.9±9.6 µM Cl-/h)-respiring cultures. Additionally, the transcripts with the highest loadings in these principal components were identified, suggesting that those transcripts were responsible for the partitioning of the experiments. By analyzing the transcriptomes (n=53) across experiments, relationships among transcripts were identified, and hypotheses about the relationships between electron transport chain members were proposed. One hypothesis, that the hydrogenases Hup and Hym and the formate dehydrogenase-like oxidoreductase (DET0186-DET0187) form a complex (as displayed by their tight clustering in the heat map analysis), was explored using a nondenaturing protein separation technique combined with proteomic sequencing. Although these proteins did not migrate as a single complex, DET0112 (an FdhB-like protein encoded in the Hup operon) was found to comigrate with DET0187 rather than with the catalytic Hup subunit DET0110. On closer inspection of the genome annotations of all Dehalococcoides strains, the DET0185-to-DET0187 operon was found to lack a key subunit, an FdhB-like protein. Therefore, on the basis of the transcriptomic, genomic, and proteomic evidence, the place of the missing subunit in the DET0185-to-DET0187 operon is likely filled by recruiting a subunit expressed from the Hup operon (DET0112).


Assuntos
Chloroflexi/genética , Regulação Bacteriana da Expressão Gênica , Hidrocarbonetos Clorados/metabolismo , Oxirredutases/genética , Transcriptoma , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chloroflexi/enzimologia , Chloroflexi/fisiologia , Clorofenóis/metabolismo , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Hidrogenase/genética , Hidrogenase/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Óperon/genética , Oxirredutases/metabolismo , Subunidades Proteicas
9.
J Hazard Mater ; 477: 135329, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39088945

RESUMO

The escalating production of synthetic plastics and inadequate waste management have led to pervasive microplastic (MP) contamination in aquatic ecosystems. MPs, typically defined as particles smaller than 5 mm, have become an emerging pollutant in freshwater environments. While significant concern about MPs has risen since 2014, research has predominantly concentrated on marine settings, there is an urgent need for a more in-depth critical review to systematically summarize the current global efforts, knowledge gaps, and research priorities for MP monitoring in freshwater systems. This review evaluates the current understanding of MP monitoring in freshwater environments by examining the distribution, characteristics, and sources of MPs, alongside the progression of analytical methods with quantitative evidence. Our findings suggest that MPs are widely distributed in global freshwater systems, with higher abundances found in areas with intense human economic activities, such as the United States, Europe, and China. MP abundance distributions vary across different water bodies (e.g., rivers, lakes, estuaries, and wetlands), with sampling methods and size range selections significantly influencing reported MP abundances. Despite great global efforts, there is still a lack of harmonized analyzing framework and understanding of MP pollution in specific regions and facilities. Future research should prioritize the development of standardized analysis protocols and open-source MP datasets to facilitate data comparison. Additionally, exploring the potential of state-of-the-art artificial intelligence for rapid, accurate, and large-scale modeling and characterization of MPs is crucial to inform effective strategies for managing MP pollution in freshwater ecosystems.


Assuntos
Monitoramento Ambiental , Água Doce , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Água Doce/análise , Pesquisa
10.
Sci Total Environ ; : 175515, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39147068

RESUMO

Woodchips are widely used as a low-cost and renewable organic carbon source for denitrifying biofilms in passive nutrient removal systems. One limitation of wood-based biofiltration systems is their relatively poor removal of phosphorus (P) from subsurface drainage and stormwaters, necessitating the use of additional filter media when co-treatment of nitrogen (N) and P is required. Here, we show that anoxic-oxic cycling of woodchip media, which enhances nitrate (NO3-) removal by increasing the mobilization of organic carbon from wood, also improves orthophosphate (Pi) uptake onto woodchips. Orthophosphate removal rates in flow-through woodchip columns ranged from 0 to 34.9 µg PO43- L-1 h-1 under continuously-saturated (anoxic) conditions, and increased to 17.5 to 71.9 µg PO43- L-1 h-1 in columns undergoing drying-rewetting (oxic-anoxic) cycles. The highest Pi removal efficiencies were observed in the first 20 h after reactors were re-flooded, and were concurrent with maxima in polyphosphate kinase (ppk) gene expression by the polyphosphate accumulating organisms (PAOs) Accumulibacter spp. and Pseudomonas spp. Batch experiments confirmed that anoxic-anaerobic-oxic pre-incubation conditions led to orthophosphate uptake onto woodchips as high as 74.9 ±â€¯0.8 mg PO43-/kg woodchip, and batch tests with autoclaved woodchips demonstrated that Pi uptake was due to biological processes and not adsorption. NO3- removal in batch tests was also greatest under oxic incubation conditions, attributed to greater carbon availability in hypoxic to anoxic zones in woodchip biofilms. While further research is needed to elucidate the mechanisms controlling enhanced Pi uptake by woodchip biofilms under anoxic-(anaerobic-)oxic cycling, these results suggest a role for enhanced Pi uptake by PAOs in a nature-based system for treatment of nonpoint source nutrients.

11.
Environ Sci Technol ; 47(1): 372-81, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23153046

RESUMO

Molecular biomarkers hold promise for inferring rates of key metabolic activities in complex microbial systems. However, few studies have assessed biomarker levels for simultaneously occurring (and potentially competing) respirations. In this study, methanogenesis biomarkers for Methanospirillum hungatei were developed, tested, and compared to Dehalococcoides mccartyi biomarkers in a well-characterized mixed culture. Proteomic analyses of mixed culture samples (n = 4) confirmed expression of many M. hungatei methanogenesis enzymes. The mRNAs for two oxidoreductases detected were explored as quantitative biomarkers of hydrogenotrophic methanogenesis: a coenzyme F(420)-reducing hydrogenase (FrcA) and an iron sulfur protein (MvrD). As shown previously in D. mccartyi, M. hungatei transcript levels correlated linearly with measured (R = 0.97 for FrcA, R = 0.91 for MvrD; n = 7) or calculated respiration rate (R = 0.81 for FrcA, R = 0.62 for MvrD; n = 35) across two orders of magnitude on a log-log scale. The average abundance of MvrD transcripts was consistently two orders of magnitude lower than FrcA, regardless of experimental condition. In experiments where M. hungatei was competing for hydrogen with D. mccartyi, transcripts for the key respiratory hydrogenase HupL were generally less abundant per mL than FrcA and more abundant than MvrD. With no chlorinated electron acceptor added, HupL transcripts fell below both targets. These biomarkers hold promise for the prediction of in situ rates of respiration for these microbes, even when growing in mixed culture and utilizing a shared substrate which has important implications for both engineered and environmental systems. However, the differences in overall biomarker abundances suggest that the strength of any particular mRNA biomarker relies upon empirically established quantitative trends under a range of pertinent conditions.


Assuntos
Metano/metabolismo , Methanospirillum/fisiologia , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Bactérias/metabolismo , Biomarcadores/metabolismo , Chloroflexi/fisiologia , Expressão Gênica , Hidrocarbonetos Clorados/metabolismo , Hidrogênio/metabolismo , Oxirredutases/metabolismo , Proteômica
12.
Environ Sci Technol ; 47(8): 3724-33, 2013 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-23363057

RESUMO

Bioremediation of chlorinated ethenes via anaerobic reductive dechlorination relies upon the activity of specific microbial populations--most notably Dehalococcoides (DHC) strains. In the lab and field Dehalococcoides grow most robustly in mixed communities which usually contain both fermenters and methanogens. Recently, researchers have been developing quantitative molecular biomarkers to aid in field site diagnostics and it is hoped that these biomarkers could aid in the modeling of anaerobic reductive dechlorination. A comprehensive biokinetic model of a community containing Dehalococcoides mccartyi (formerly D. ethenogenes) was updated to describe continuously fed reactors with specific biomass levels based on quantitative PCR (qPCR)-based population data (DNA and RNA). The model was calibrated and validated with subsets of chemical and molecular biological data from various continuous feed experiments (n = 24) with different loading rates of the electron acceptor (1.5 to 482 µeeq/L-h), types of electron acceptor (PCE, TCE, cis-DCE) and electron donor to electron acceptor ratios. The resulting model predicted the sum of dechlorination products vinyl chloride (VC) and ethene (ETH) well. However, VC alone was under-predicted and ETH was over predicted. Consequently, competitive inhibition among chlorinated ethenes was examined and then added to the model. Additionally, as 16S rRNA gene copy numbers did not provide accurate model fits in all cases, we examined whether an improved fit could be obtained if mRNA levels for key functional enzymes could be used to infer respiration rates. The resulting empirically derived mRNA "adjustment factors" were added to the model for both DHC and the main methanogen in the culture (a Methanosaeta species) to provide a more nuanced prediction of activity. Results of this study suggest that at higher feeding rates competitive inhibition is important and mRNA provides a more accurate indicator of a population's instantaneous activity than 16S rRNA gene copies alone as biomass estimates.


Assuntos
Chloroflexi/metabolismo , Halogenação , Hidrocarbonetos Halogenados/metabolismo , Hidrocarbonetos Halogenados/farmacocinética , Metano/metabolismo , Modelos Biológicos , Aerobiose , Biodegradação Ambiental , Biomarcadores/metabolismo , Biomassa , Chloroflexi/genética , Elétrons , Etilenos/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Cinética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Tempo , Tricloroetileno/metabolismo , Tricloroetileno/farmacocinética , Cloreto de Vinil/metabolismo
13.
BMC Genomics ; 13: 327, 2012 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-22823523

RESUMO

BACKGROUND: The Dehalococcoides are strictly anaerobic bacteria that gain metabolic energy via the oxidation of H2 coupled to the reduction of halogenated organic compounds. Dehalococcoides spp. grow best in mixed microbial consortia, relying on non-dechlorinating members to provide essential nutrients and maintain anaerobic conditions.A metagenome sequence was generated for the dechlorinating mixed microbial consortium KB-1. A comparative metagenomic study utilizing two additional metagenome sequences for Dehalococcoides-containing dechlorinating microbial consortia was undertaken to identify common features that are provided by the non-dechlorinating community and are potentially essential to Dehalococcoides growth. RESULTS: The KB-1 metagenome contained eighteen novel homologs to reductive dehalogenase genes. The metagenomes obtained from the three consortia were automatically annotated using the MG-RAST server, from which statistically significant differences in community composition and metabolic profiles were determined. Examination of specific metabolic pathways, including corrinoid synthesis, methionine synthesis, oxygen scavenging, and electron-donor metabolism identified the Firmicutes, methanogenic Archaea, and the ∂-Proteobacteria as key organisms encoding these pathways, and thus potentially producing metabolites required for Dehalococcoides growth. CONCLUSIONS: Comparative metagenomics of the three Dehalococcoides-containing consortia identified that similarities across the three consortia are more apparent at the functional level than at the taxonomic level, indicating the non-dechlorinating organisms' identities can vary provided they fill the same niche within a consortium. Functional redundancy was identified in each metabolic pathway of interest, with key processes encoded by multiple taxonomic groups. This redundancy likely contributes to the robust growth and dechlorination rates in dechlorinating enrichment cultures.


Assuntos
Proteínas de Bactérias/genética , Chloroflexi/genética , Metagenômica/métodos , Chloroflexi/classificação , Filogenia , Transdução de Sinais/genética
14.
Environ Sci Technol ; 46(17): 9388-97, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22812668

RESUMO

Molecular biomarkers could provide critical insight into myriad in situ microbial activities. In this study we explore correlations of both mRNA and protein biomarkers with chloroethene respiration rate in Dehalococcoides. In a series of continuously fed dechlorinating mixed-culture microcosm experiments (n = 26), we varied respiratory substrates, substrate ratios and feeding rates. Transcript levels for most biomarkers were responsive down to 0.01× the culture's maximum respiration rate. The dehalogenase TceA and the Ni-Fe hydrogenase HupL transcripts were positively correlated (Pearson's r of 0.89 and 0.88, respectively) with respiration rates on log-log plots between 1.5 and 280 µeeq/L-hr for mRNA abundances of 10(7) to 10(10) transcripts/mL (0.07-230 transcripts/genome). These trends were independent of the types of chloroethene or electron donors fed. Other mRNA target levels plateaued or declined at respiration rates above 5 µeeq/L-hr. Using both relative and absolute protein quantification methods, we found that per-genome protein abundances of most targeted biomarkers did not statistically change over the experimental time frames. However, quantified enzyme levels allowed us to calculate in vivo enzyme-specific rate constants (k(cat)) for the dehalogenases PceA and TceA: 400 and 22 substrate molecules/enzyme-sec, respectively. Overall, these data support the promise of both mRNA and protein biomarkers for estimating process rates through either empirical (mRNA-based) or kinetic (protein-based) models, but they require follow-up studies in other cultures and at active remediation sites.


Assuntos
Proteínas de Bactérias/metabolismo , Chloroflexi/metabolismo , Etilenos/metabolismo , Hidrocarbonetos Clorados/metabolismo , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Bactérias/genética , Chloroflexi/enzimologia , Chloroflexi/genética , Poluentes Ambientais/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Mensageiro/genética
15.
Microbiol Spectr ; 10(3): e0000322, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35678574

RESUMO

Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker pmoA were found to vary quantitatively with respect to methane oxidation rates in the model aerobic methanotroph Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures grown in membrane bioreactors, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per-cell pmoA mRNA transcript levels strongly correlated with per-cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). The inclusion of both type I and type II aerobic methanotrophs suggests a universal trend between in situ activity level and pmoA RNA biomarker levels which can aid in improving estimates of both subsurface and atmospheric methane. Additionally, genome-wide expression data (obtained by transcriptome sequencing [RNA-seq]) were used to explore transcriptomic responses of steady-state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response. IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane, having an impact on global net methane emissions. Additionally, they have also gained interest for their biotechnological applications in single-cell protein production, biofuels, and bioplastics. Having better ways of measuring methanotroph activity and understanding how methanotrophs respond to changing conditions is imperative for both optimization in controlled-growth applications and understanding in situ methane oxidation rates. In this study, we explored the applicability of methane oxidation biomarkers as a universal indicator of methanotrophic activity and explored methanotroph transcriptomic response to short-term changes in substrate availability. Our results contribute to better understanding the activity of aerobic methanotrophs, their core metabolic pathways, and their stress responses.


Assuntos
Metano , Transcriptoma , Biomarcadores , Carbono , Humanos , Metano/metabolismo , Methylococcaceae , Oxirredução , Oxigênio , RNA/metabolismo
16.
FEMS Microbes ; 3: xtac021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37332513

RESUMO

Few strains of Dehalococcoides mccartyi harbour and express the vinyl chloride reductase (VcrA) that catalyzes the dechlorination of vinyl chloride (VC), a carcinogenic soil and groundwater contaminant. The vcrA operon is found on a Genomic Island (GI) and, therefore, believed to participate in horizontal gene transfer (HGT). To try to induce HGT of the vcrA-GI, we blended two enrichment cultures in medium without ammonium while providing VC. We hypothesized that these conditions would select for a mutant strain of D. mccartyi that could both fix nitrogen and respire VC. However, after more than 4 years of incubation, we found no evidence for HGT of the vcrA-GI. Rather, we observed VC-dechlorinating activity attributed to the trichloroethene reductase TceA. Sequencing and protein modelling revealed a mutation in the predicted active site of TceA, which may have influenced substrate specificity. We also identified two nitrogen-fixing D. mccartyi strains in the KB-1 culture. The presence of multiple strains of D. mccartyi with distinct phenotypes is a feature of natural environments and certain enrichment cultures (such as KB-1), and may enhance bioaugmentation success. The fact that multiple distinct strains persist in the culture for decades and that we could not induce HGT of the vcrA-GI suggests that it is not as mobile as predicted, or that mobility is restricted in ways yet to be discovered to specific subclades of Dehalococcoides.

17.
FEMS Microbiol Lett ; 368(21-24)2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34875060

RESUMO

Peatlands are responsible for over half of wetland methane emissions, yet major uncertainties remain regarding carbon flow, especially when increased availability of electron acceptors stimulates competing physiologies. We used microcosm incubations to study the effects of sulfate on microorganisms in two temperate peatlands, one bog and one fen. Three different electron donor treatments were used (13C-acetate, 13C-formate and a mixture of 12C short-chain fatty acids) to elucidate the responses of sulfate-reducing bacteria (SRB) and methanogens to sulfate stimulation. Methane production was measured and metagenomic sequencing was performed, with only the heavy DNA fraction sequenced from treatments receiving 13C electron donors. Our data demonstrate stimulation of dissimilatory sulfate reduction in both sites, with contrasting community responses. In McLean Bog (MB), hydrogenotrophic Deltaproteobacteria and acetotrophic Peptococcaceae lineages of SRB were stimulated, as were lineages with unclassified dissimilatory sulfite reductases. In Michigan Hollow Fen (MHF), there was little stimulation of Peptococcaceae populations, and a small stimulation of Deltaproteobacteria SRB populations only in the presence of formate as electron donor. Sulfate stimulated an increase in relative abundance of reads for both oxidative and reductive sulfite reductases, suggesting stimulation of an internal sulfur cycle. Together, these data indicate a stimulation of SRB activity in response to sulfate in both sites, with a stronger growth response in MB than MHF. This study provides valuable insights into microbial community responses to sulfate in temperate peatlands and is an important first step to understanding how SRB and methanogens compete to regulate carbon flow in these systems.


Assuntos
Deltaproteobacteria , Peptococcaceae , Microbiologia do Solo , Sulfatos , Carbono , Deltaproteobacteria/efeitos dos fármacos , Deltaproteobacteria/metabolismo , Ecossistema , Formiatos , Metano/análise , Metano/metabolismo , New York , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peptococcaceae/efeitos dos fármacos , Peptococcaceae/metabolismo , Sulfatos/metabolismo , Sulfatos/farmacologia
18.
ISME J ; 15(1): 293-303, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32951020

RESUMO

Ombrotrophic bogs accumulate large stores of soil carbon that eventually decompose to carbon dioxide and methane. Carbon accumulates because Sphagnum mosses slow microbial carbon decomposition processes, leading to the production of labile intermediate compounds. Acetate is a major product of Sphagnum degradation, yet rates of hydrogenotrophic methanogenesis far exceed rates of aceticlastic methanogenesis, suggesting that alternative acetate mineralization processes exist. Two possible explanations are aerobic respiration and anaerobic respiration via humic acids as electron acceptors. While these processes have been widely observed, microbial community interactions linking Sphagnum degradation and acetate mineralization remain cryptic. In this work, we use ordination and network analysis of functional genes from 110 globally distributed peatland metagenomes to identify conserved metabolic pathways in Sphagnum bogs. We then use metagenome-assembled genomes (MAGs) from McLean Bog, a Sphagnum bog in New York State, as a local case study to reconstruct pathways of Sphagnum degradation and acetate mineralization. We describe metabolically flexible Acidobacteriota MAGs that contain all genes to completely degrade Sphagnum cell wall sugars under both aerobic and anaerobic conditions. Finally, we propose a hypothetical model of acetate oxidation driven by changes in peat redox potential that explain how bogs may circumvent aceticlastic methanogenesis through aerobic and humics-driven respiration.


Assuntos
Sphagnopsida , Acetatos , Solo , Microbiologia do Solo , Áreas Alagadas
19.
FEMS Microbiol Ecol ; 96(5)2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32188966

RESUMO

The anaerobic digestion of wastes is globally important in the production of methane (CH4) as a biofuel. When sulfate is present, sulfate-reducing bacteria (SRB) are stimulated, competing with methanogens for common substrates, which decreases CH4 production and results in the formation of corrosive, odorous hydrogen sulfide gas (H2S). Here, we show that a population of SRB within a methanogenic bioreactor fed only butyrate for years immediately (within hours) responded to sulfate availability and shifted the microbial community dynamics within the bioreactor. By mapping shotgun metatranscriptomes to metagenome-assembled genomes, we shed light on the transcriptomic responses of key community members in response to increased sulfate provision. We link these short-term transcriptional responses to long-term niche partitioning using comparative metagenomic analyses. Our results suggest that sulfate provision supports a syntrophic butyrate oxidation community that disfavors poly-ß-hydroxyalkanoate storage and that hydrogenotrophic SRB populations effectively exclude obligately hydrogenotrophic, but not aceticlastic, methanogens when sulfate is readily available. These findings elucidate key ecological dynamics between SRB, methanogens and syntrophic butyrate-oxidizing bacteria, which can be applied to a variety of engineered and natural systems.


Assuntos
Euryarchaeota , Sulfatos , Reatores Biológicos , Butiratos , Euryarchaeota/genética , Metano
20.
Water Res ; 171: 115342, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841955

RESUMO

Volunteer monitoring in the Hudson River watershed since 2012 has identified that the Wallkill River and Rondout Creek tributary complex have elevated concentrations of the fecal indicator bacteria, enterococci. Concentrations of enterococci do not provide insight into the sources of pollution and are imperfect indicators of health risks. In 2017, the regular monthly volunteer monitoring campaign for culturable enterococci at 24 sites on the Wallkill and Rondout expanded to include: (1) culturable measurements of E. coli and quantification of E. coli and Enterococcus specific markers vis nanoscale qPCR, (2) microbial source tracking (MST) assays (avian, human, bovine, and equine) via real time PCR and nanoscale qPCR, and 3) quantification of 12 gastrointestinal pathogens including viruses, bacteria, and protozoa via nanoscale qPCR. Three human associated MST markers (HumM2, HF183, and B. theta) corroborated that human pollution was present in Rondout Creek and widespread in the Wallkill River. The presence of B. theta was associated with increased concentrations of culturable E. coli. Genes for adenovirus 40 and 41 conserved region, rotavirus A NSP3, E. coli eae and stx1, and Giardia lamblia 18S rRNA were detected in >45% of samples. Abundance of rotavirus A NSP3 genes was significantly correlated to the bovine marker gene, CowM3, though wild bird sources cannot be ruled out. This is the first study to investigate potential fecal pollution sources and pathogen concentrations in Hudson tributaries during the months of peak recreational use.


Assuntos
Rios , Microbiologia da Água , Animais , Bactérias , Bovinos , Monitoramento Ambiental , Escherichia coli , Fezes , Cavalos , Humanos , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA