RESUMO
We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation-induced (ES; 60â Hz) DA release was recorded in the NAc of single- or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than that in males. Finally, DA release following ES of the medial forebrain bundle at 60â Hz was studied over 4â weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, and sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.
Assuntos
Corpo Estriado , Dopamina , Estimulação Elétrica , Núcleo Accumbens , Caracteres Sexuais , Animais , Masculino , Núcleo Accumbens/metabolismo , Feminino , Dopamina/metabolismo , Ratos , Corpo Estriado/metabolismo , Estimulação Elétrica/métodos , Ratos Sprague-Dawley , Abrigo para Animais , Ovariectomia , Metanfetamina/farmacologiaRESUMO
BACKGROUND: To study neural control of behavior, intracellular recording and stimulation of many neurons in freely moving animals would be ideal. However, current technologies limit the number of neurons that can be monitored and manipulated. A new technology has become available for intracellular recording and stimulation which we demonstrate in the tractable nervous system of Aplysia. NEW METHOD: Carbon fiber electrode arrays (whose tips are coated with platinum-iridium) were used with an in vitro feeding preparation to intracellularly record from and to control the activity of multiple neurons during feeding movements. RESULTS: In an in vitro feeding preparation, the carbon fiber electrode arrays recorded action potentials and subthreshold synaptic potentials during feeding movements. Depolarizing or hyperpolarizing currents activated or inhibited identified neurons (respectively), manipulating the movements of the feeding apparatus. COMPARISON WITH EXISTING METHOD(S): Standard glass microelectrodes that are commonly used for intracellular recording are stiff, liable to break in response to movement, and require many micromanipulators to be precisely positioned. In contrast, carbon fiber arrays are less sensitive to movement, but are capable of multiple channels of intracellular recording and stimulation. CONCLUSIONS: Carbon fiber arrays are a novel technology for intracellular recording that can be used in moving preparations. They can record both action potentials and synaptic activity in multiple neurons and can be used to stimulate multiple neurons in complex patterns.
Assuntos
Aplysia , Neurônios , Animais , Fibra de Carbono/química , Aplysia/fisiologia , Neurônios/fisiologia , Microeletrodos , Potenciais de Ação/fisiologiaRESUMO
We investigated sex differences in dopamine (DA) release in the nucleus accumbens (NAc) and dorsolateral striatum (DLS) using a chronic 16-channel carbon fiber electrode and fast-scan cyclic voltammetry (FSCV). Electrical stimulation (ES; 60Hz) induced DA release was recorded in the NAc of single or pair-housed male and female rats. When core (NAcC) and shell (NAcS) were recorded simultaneously, there was greater ES DA release in NAcC of pair-housed females compared with single females and males. Housing did not affect ES NAc DA release in males. In contrast, there was significantly more ES DA release from the DLS of female rats than male rats. This was true prior to and after treatment with methamphetamine. Furthermore, in castrated (CAST) males and ovariectomized (OVX) females, there were no sex differences in ES DA release from the DLS, demonstrating the hormone dependence of this sex difference. However, in the DLS of both intact and gonadectomized rats, DA reuptake was slower in females than in males. Finally, DA release following ES of the medial forebrain bundle at 60Hz was studied over four weeks. ES DA release increased over time for both CAST males and OVX females, demonstrating sensitization. Using this novel 16-channel chronic FSCV electrode, we found sex differences in the effects of social housing in the NAcS, sex differences in DA release from intact rats in DLS, sex differences in DA reuptake in DLS of intake and gonadectomized rats, and we report sensitization of ES-induced DA release in DLS in vivo.
RESUMO
Objective.Carbon fiber (CF) is good for chronic neural recording due to the small diameter (7µm), high Young's modulus, and low electrical resistance, but most high-density carbon fiber (HDCF) arrays are manually assembled with labor-intensive procedures and limited by the accuracy and repeatability of the operator handling. A machine to automate the assembly is desired.Approach.The HDCF array assembly machine contains: (1) a roller-based CF extruder, (2) a motion system with three linear and one rotary stages, (3) an imaging system with two digital microscope cameras, and (4) a laser cutter. The roller-based extruder automatically feeds single CF as raw material. The motion system aligns the CF with the array backend then places it. The imaging system observes the relative position between the CF and the backend. The laser cutter cuts off the CF. Two image processing algorithms are implemented to align the CF with the support shanks and circuit connection pads.Main results.The machine was capable of precisely handling 6.8µm carbon fiber electrodes (CFEs). Each electrode was placed into a 12µm wide trenches in a silicon support shank. Two HDCF arrays with 16 CFEs populated on 3 mm shanks (with 80µm pitch) were fully assembled. Impedance measurements were found to be in good agreement with manual assembled arrays. One HDCF array was implanted in the motor cortex in an anesthetized rat and was able to detect single unit activity.Significance.This machine can eliminate the manual labor-intensive handling, alignment and placement of single CF during assembly, providing a proof-of-concepts towards fully automated HDCF array assembly and batch production.
Assuntos
Fenômenos Eletrofisiológicos , Ratos , Animais , Fibra de Carbono , Microeletrodos , Eletrodos Implantados , Impedância ElétricaRESUMO
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Assuntos
Córtex Cerebral , Neurônios , Animais , Macaca mulatta , Utah , Microeletrodos , Córtex Cerebral/fisiologia , Eletrodos ImplantadosRESUMO
Conventional peripheral nerve probes are primarily fabricated in a cleanroom, requiring the use of multiple expensive and highly specialized tools. This paper presents a cleanroom "light" fabrication process of carbon fiber neural electrode arrays that can be learned quickly by an inexperienced cleanroom user. This carbon fiber electrode array fabrication process requires just one cleanroom tool, a Parylene C deposition machine, that can be learned quickly or outsourced to a commercial processing facility at marginal cost. This fabrication process also includes hand-populating printed circuit boards, insulation, and tip optimization. The three different tip optimizations explored here (Nd:YAG laser, blowtorch, and UV laser) result in a range of tip geometries and 1 kHz impedances, with blowtorched fibers resulting in the lowest impedance. While previous experiments have proven laser and blowtorch electrode efficacy, this paper also shows that UV laser-cut fibers can record neural signals in vivo. Existing carbon fiber arrays either do not have individuated electrodes in favor of bundles or require cleanroom fabricated guides for population and insulation. The proposed arrays use only tools that can be used at a benchtop for fiber population. This carbon fiber electrode array fabrication process allows for quick customization of bulk array fabrication at a reduced price compared to commercially available probes.
Assuntos
Carbono , Nervos Periféricos , Fibra de Carbono , Impedância Elétrica , Eletrodos Implantados , MicroeletrodosRESUMO
Bioelectric medicine treatments target disorders of the nervous system unresponsive to pharmacological methods. While current stimulation paradigms effectively treat many disorders, the underlying mechanisms are relatively unknown, and current neuroscience recording electrodes are often limited in their specificity to gross averages across many neurons or axons. Here, we develop a novel, durable carbon fiber electrode array adaptable to many neural structures for precise neural recording. Carbon fibers ( [Formula: see text] diameter) were sharpened using a reproducible blowtorchmethod that uses the reflection of fibers against the surface of a water bath. The arrays were developed by partially embedding carbon fibers in medical-grade silicone to improve durability. We recorded acute spontaneous electrophysiology from the rat cervical vagus nerve (CVN), feline dorsal root ganglia (DRG), and rat brain. Blowtorching resulted in fibers of 72.3 ± 33.5-degree tip angle with [Formula: see text] exposed carbon. Observable neural clusters were recorded using sharpened carbon fiber electrodes fromrat CVN ( [Formula: see text]), feline DRG ( [Formula: see text]), and rat brain ( [Formula: see text]). Recordings from the feline DRG included physiologically relevant signals from increased bladder pressure and cutaneous brushing. These results suggest that this carbon fiber array is a uniquely durable and adaptable neural recordingdevice. In the future, this device may be useful as a bioelectric medicine tool for diagnosis and closed-loop neural control of therapeutic treatments and monitoring systems.
Assuntos
Gânglios Espinais , Neurônios , Animais , Fibra de Carbono , Gatos , Eletrodos Implantados , Microeletrodos , RatosRESUMO
Objective.To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8µm-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80µm). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissuein vivo(e.g. rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation.Approach.We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine molluskAplysia californica. Neuron cell bodies inAplysiarange from 30µm to over 250µm. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron's cell body with both electrodes and connecting them to a DC coupled amplifier.Main results.We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes.Significance.The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics.
Assuntos
Neurônios , Animais , Fibra de Carbono , Eletrodos Implantados , Microeletrodos , Neurônios/fisiologia , Ratos , Razão Sinal-RuídoRESUMO
Autonomic nerves convey essential neural signals that regulate vital body functions. Recording clearly distinctive physiological neural signals from autonomic nerves will help develop new treatments for restoring regulatory functions. However, this is very challenging due to the small nature of autonomic nerves and the low-amplitude signals from their small axons. We developed a multi-channel, high-density, intraneural carbon fiber microelectrode array (CFMA) with ultra-small electrodes (8-9 µm in diameter, 150-250 µm in length) for recording physiological action potentials from small autonomic nerves. In this study, we inserted CFMA with up to 16 recording carbon fibers in the cervical vagus nerve of 22 isoflurane-anesthetized rats. We recorded action potentials with peak-to-peak amplitudes of 15.1-91.7 µV and signal-to-noise ratios of 2.0-8.3 on multiple carbon fibers per experiment, determined conduction velocities of some vagal signals in the afferent (0.7-4.4 m/s) and efferent (0.7-8.8 m/s) directions, and monitored firing rate changes in breathing and blood glucose modulated conditions. Overall, these experiments demonstrated that CFMA is a novel interface for in-vivo intraneural action potential recordings. This work is considerable progress towards the comprehensive understanding of physiological neural signaling in vital regulatory functions controlled by autonomic nerves.
Assuntos
Fibra de Carbono , Eletrodos Implantados , Microeletrodos , Monitorização Fisiológica/instrumentação , Nervo Vago/fisiologia , Animais , Feminino , Masculino , Monitorização Fisiológica/métodos , Ratos , Ratos Sprague-DawleyRESUMO
OBJECTIVE: Carbon fiber electrodes may enable better long-term brain implants, minimizing the tissue response commonly seen with silicon-based electrodes. The small diameter fiber may enable high-channel count brain-machine interfaces capable of reproducing dexterous movements. Past carbon fiber electrodes exhibited both high fidelity single unit recordings and a healthy neuronal population immediately adjacent to the recording site. However, the recording yield of our carbon fiber arrays chronically implanted in the brain typically hovered around 30%, for previously unknown reasons. In this paper we investigated fabrication process modifications aimed at increasing recording yield and longevity. APPROACH: We tested a new cutting method using a 532nm laser against traditional scissor methods for the creation of the electrode recording site. We verified the efficacy of improved recording sites with impedance measurements and in vivo array recording yield. Additionally, we tested potentially longer-lasting coating alternatives to PEDOT:pTS, including PtIr and oxygen plasma etching. New coatings were evaluated with accelerated soak testing and acute recording. MAIN RESULTS: We found that the laser created a consistent, sustainable 257 ± 13.8 µm2 electrode with low 1 kHz impedance (19 ± 4 kΩ with PEDOT:pTS) and low fiber-to-fiber variability. The PEDOT:pTS coated laser cut fibers were found to have high recording yield in acute (97% > 100 µV pp , N = 34 fibers) and chronic (84% > 100 µV pp , day 7; 71% > 100 µV pp , day 63, N = 45 fibers) settings. The laser cut recording sites were good platforms for the PtIr coating and oxygen plasma etching, slowing the increase in 1 kHz impedance compared to PEDOT:pTS in an accelerated soak test. SIGNIFICANCE: We have found that laser cut carbon fibers have a high recording yield that can be maintained for over two months in vivo and that alternative coatings perform better than PEDOT:pTS in accelerated aging tests. This work provides evidence to support carbon fiber arrays as a viable approach to high-density, clinically-feasible brain-machine interfaces.