Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Biol Chem ; 294(37): 13755-13768, 2019 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346033

RESUMO

Protection of neuronal homeostasis is a major goal in the management of neurodegenerative diseases. Microtubule-associated Ser/Thr kinase 2 (MAST2) inhibits neurite outgrowth, and its inhibition therefore represents a potential therapeutic strategy. We previously reported that a viral protein (G-protein from rabies virus) capable of interfering with protein-protein interactions between the PDZ domain of MAST2 and the C-terminal moieties of its cellular partners counteracts MAST2-mediated suppression of neurite outgrowth. Here, we designed peptides derived from the native viral protein to increase the affinity of these peptides for the MAST2-PDZ domain. Our strategy involved modifying the length and flexibility of the noninteracting sequence linking the two subsites anchoring the peptide to the PDZ domain. Three peptides, Neurovita1 (NV1), NV2, and NV3, were selected, and we found that they all had increased affinities for the MAST2-PDZ domain, with Kd values decreasing from 1300 to 60 nm, while target selectivity was maintained. A parallel biological assay evaluating neurite extension and branching in cell cultures revealed that the NV peptides gradually improved neural activity, with the efficacies of these peptides for stimulating neurite outgrowth mirroring their affinities for MAST2-PDZ. We also show that NVs can be delivered into the cytoplasm of neurons as a gene or peptide. In summary, our findings indicate that virus-derived peptides targeted to MAST2-PDZ stimulate neurite outgrowth in several neuron types, opening up promising avenues for potentially using NVs in the management of neurodegenerative diseases.


Assuntos
Neuritos/metabolismo , Crescimento Neuronal/efeitos dos fármacos , Domínios PDZ/fisiologia , Estimulantes do Sistema Nervoso Central/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Microtúbulos/metabolismo , Neurônios/metabolismo , Peptídeos/metabolismo , Peptídeos/farmacologia , Domínios e Motivos de Interação entre Proteínas , Proteínas Serina-Treonina Quinases/metabolismo , Vírus da Raiva , Relação Estrutura-Atividade , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia
2.
Nat Methods ; 12(8): 787-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26053890

RESUMO

Many protein interactions are mediated by small linear motifs interacting specifically with defined families of globular domains. Quantifying the specificity of a motif requires measuring and comparing its binding affinities to all its putative target domains. To this end, we developed the high-throughput holdup assay, a chromatographic approach that can measure up to 1,000 domain-motif equilibrium binding affinities per day. After benchmarking the approach on 210 PDZ-peptide pairs with known affinities, we determined the affinities of two viral PDZ-binding motifs derived from human papillomavirus E6 oncoproteins for 209 PDZ domains covering 79% of the human 'PDZome'. We obtained sharply sequence-dependent binding profiles that quantitatively describe the PDZome recognition specificity of each motif. This approach, applicable to many categories of domain-ligand interactions, has wide potential for quantifying the specificities of interactomes.


Assuntos
Ensaios de Triagem em Larga Escala , Domínios PDZ , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Motivos de Aminoácidos , Cromatografia , Proteínas de Ligação a DNA/química , Humanos , Cinética , Ligantes , Proteínas Oncogênicas Virais/química , Conformação Proteica , Proteoma , Proteínas Repressoras/química , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA