Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 26(5): 1960-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22267340

RESUMO

Beneficial microbes and probiotics show promise for the treatment of pediatric gastrointestinal diseases. However, basic mechanisms of probiosis are not well understood, and most investigations have been performed in germ-free or microbiome-depleted animals. We sought to functionally characterize probiotic-host interactions in the context of normal early development. Outbred CD1 neonatal mice were orally gavaged with one of two strains of human-derived Lactobacillus reuteri or an equal volume of vehicle. Transcriptome analysis was performed on enterocyte RNA isolated by laser-capture microdissection. Enterocyte migration and proliferation were assessed by labeling cells with 5-bromo-2'-deoxyuridine, and fecal microbial community composition was determined by 16S metagenomic sequencing. Probiotic ingestion altered gene expression in multiple canonical pathways involving cell motility. L. reuteri strain DSM 17938 dramatically increased enterocyte migration (3-fold), proliferation (34%), and crypt height (29%) compared to vehicle-treated mice, whereas strain ATCC PTA 6475 increased cell migration (2-fold) without affecting crypt proliferative activity. In addition, both probiotic strains increased the phylogenetic diversity and evenness between taxa of the fecal microbiome 24 h after a single probiotic gavage. These experiments identify two targets of probiosis in early development, the intestinal epithelium and the gut microbiome, and suggest novel mechanisms for probiotic strain-specific effects.


Assuntos
Animais Recém-Nascidos , Movimento Celular , Enterócitos/citologia , Intestinos/microbiologia , Probióticos , Animais , Sequência de Bases , Primers do DNA , Feminino , Imuno-Histoquímica , Masculino , Camundongos , RNA Ribossômico 16S/genética , Transcriptoma
2.
J Pediatr Gastroenterol Nutr ; 55(3): 299-307, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22343914

RESUMO

OBJECTIVES: Beneficial microbes and probiotics are promising agents for the prevention and treatment of enteric and diarrheal diseases in children; however, little is known about their in vivo mechanisms of action. We used a neonatal mouse model of rotavirus diarrhea to gain insight into how probiotics ameliorate acute gastroenteritis. METHODS: Rotavirus-infected mice were treated with 1 of 2 strains of human-derived Lactobacillus reuteri. We assessed intestinal microbiome composition with 16S metagenomic sequencing, enterocyte migration and proliferation with 5-bromo-2'-deoxyuridine, and antibody and cytokine concentrations with multiplex analyses of intestinal explant cultures. RESULTS: Probiotics reduced diarrhea duration, improved intestinal histopathology, and enhanced intestinal microbiome richness and phylogenetic diversity. The magnitude of reduction of diarrhea by probiotics was strain specific and influenced by nutritional status. L reuteri DSM 17938 reduced diarrhea duration by 0, 1, and 2 days in underweight, normal weight, and overweight pups, respectively. The magnitude of reduction of diarrhea duration correlated with increased enterocyte proliferation and migration. Strain ATCC PTA 6475 reduced diarrhea duration by 1 day in all of the mice without increasing enterocyte proliferation. Both probiotic strains decreased concentrations of proinflammatory cytokines, including macrophage inflammatory protein-1α and interleukin-1ß, in all of the animals, and increased rotavirus-specific antibodies in all but the underweight animals. Body weight also influenced the host response to rotavirus, in terms of diarrhea duration, enterocyte turnover, and antibody production. CONCLUSIONS: These data suggest that probiotic enhancement of enterocyte proliferation, villus repopulation, and virus-specific antibodies may contribute to diarrhea resolution, and that nutritional status influences the host response to both beneficial microbes and pathogens.


Assuntos
Peso Corporal , Diarreia/tratamento farmacológico , Intestinos/microbiologia , Limosilactobacillus reuteri , Estado Nutricional , Probióticos , Infecções por Rotavirus/tratamento farmacológico , Animais , Animais Recém-Nascidos , Anticorpos/sangue , Proliferação de Células , Citocinas/metabolismo , Diarreia/microbiologia , Diarreia/patologia , Modelos Animais de Doenças , Enterócitos/patologia , Gastroenterite/complicações , Gastroenterite/tratamento farmacológico , Gastroenterite/virologia , Humanos , Mediadores da Inflamação/metabolismo , Intestinos/patologia , Metagenoma/genética , Camundongos , Camundongos Endogâmicos , Sobrepeso/complicações , Filogenia , Rotavirus , Infecções por Rotavirus/complicações , Infecções por Rotavirus/virologia , Magreza/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA