Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 35(6): 85, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31134456

RESUMO

Surface properties like hydrophobicity, aggregation ability, adhesion to mucosal surfaces and epithelial cells and transit time are key features for the characterization of probiotic strains. In this study, we used two Lactobacillus paracasei subsp. paracasei strains (BGNJ1-64 and BGSJ2-8) strains which were previously described with very strong aggregation capacity. The aggregation promoting factor (AggLb) expressed in these strains showed high level of binding to collagen and fibronectin, components of extracellular matrix. The working hypothesis was that strains able to aggregate have an advantage to resist in intestinal tract. So, we assessed whether these strains and their derivatives (without aggLb gene) are able to bind or not to intestinal components and we compared the transit time of each strains in mice. In that purpose parental strains (BGNJ1-64 and BGSJ2-8) and their aggregation negative derivatives (BGNJ1-641 and BGSJ2-83) were marked with double antibiotic resistance in order to be tracked in in vivo experiments in mice. Comparative analysis of binding ability of WT and aggregation negative strains to different human intestinal cell lines and mucin revealed no significant difference among them, excluding involvement of AggLb in interaction with surface of intestinal cells and mucin. In vivo experiments showed that surviving and transit time of marked strains in mice did not drastically depend on the presence of the AggLb aggregation factor.


Assuntos
Moléculas de Adesão Celular/metabolismo , Células Epiteliais/microbiologia , Intestinos/microbiologia , Lacticaseibacillus paracasei/crescimento & desenvolvimento , Lacticaseibacillus paracasei/fisiologia , Ligação Proteica , Animais , Aderência Bacteriana/fisiologia , Células CACO-2 , Moléculas de Adesão Celular/fisiologia , Colágeno/metabolismo , Fibronectinas/metabolismo , Células HT29 , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mucinas/metabolismo , Probióticos , Análise de Onda de Pulso , Propriedades de Superfície
2.
Environ Microbiol ; 19(9): 3579-3594, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28695648

RESUMO

Bacterial adhesion is a critical step for colonization of the host. The pioneer colonizer and commensal bacterium of the human gastrointestinal tract, Streptococcus salivarius, has strong adhesive properties but the molecular determinants of this adhesion remain uncharacterized. Serine-rich repeat (SRR) glycoproteins are a family of adhesins that fulfil an important role in adhesion. In general, Gram-positive bacterial genomes have a unique SRR glycoprotein-encoding gene. We demonstrate that S. salivarius expresses three large and glycosylated surface-exposed proteins - SrpA, SrpB and SrpC - that show characteristics of SRR glycoproteins and are secreted through the accessory SecA2/Y2 system. Two glycosyltransferases - GtfE/F - encoded outside of the secA2/Y2 locus, unusually, perform the first step of the sequential glycosylation process, which is crucial for SRR activity. We show that SrpB and SrpC play complementary adhesive roles involved in several steps of the colonization process: auto-aggregation, biofilm formation and adhesion to a variety of host epithelial cells and components. We also show that at least one of the S. salivarius SRR glycoproteins is important for colonization in mice. SrpA, SrpB and SrpC are the main factors underlying the multifaceted adhesion of S. salivarius and, therefore, play a major role in host colonization.


Assuntos
Adesinas Bacterianas/metabolismo , Aderência Bacteriana/fisiologia , Proteínas de Bactérias/metabolismo , Mucosa Intestinal/microbiologia , Glicoproteínas de Membrana/metabolismo , Streptococcus salivarius/patogenicidade , Animais , Aderência Bacteriana/genética , Células Epiteliais/microbiologia , Trato Gastrointestinal/microbiologia , Glucosiltransferases/genética , Glicosilação , Humanos , Masculino , Camundongos , Modelos Animais , Streptococcus salivarius/genética , Streptococcus salivarius/metabolismo
3.
PLoS Genet ; 9(6): e1003539, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754962

RESUMO

Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates.


Assuntos
Enterococcus faecalis/genética , Interações Hospedeiro-Patógeno/genética , Prófagos/genética , Fatores de Virulência/genética , Ativação Viral/genética , Cromossomos Bacterianos/genética , Infecção Hospitalar/genética , Enterococcus faecalis/patogenicidade , Genoma Bacteriano , Humanos , Prófagos/metabolismo , Prófagos/patogenicidade , Fatores de Virulência/metabolismo
4.
J Infect Dis ; 211(1): 62-71, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25035517

RESUMO

Enterococcus faecalis is a commensal bacterium of the human intestine and a major opportunistic pathogen in immunocompromised and elderly patients. The pathogenesis of E. faecalis infection relies in part on its capacity to colonize the gut. Following disruption of intestinal homeostasis, E. faecalis can overgrow, cross the intestinal barrier, and enter the lymph and bloodstream. To identify and characterize E. faecalis genes that are key to intestinal colonization, our strategy consisted in screening mutants for the following phenotypes related to intestinal lifestyle: antibiotic resistance, overgrowth, and competition against microbiota. From the identified colonization genes, epaX encodes a glycosyltransferase located in a variable region of the enterococcal polysaccharide antigen (epa) locus. We demonstrated that EpaX acts on sugar composition, promoting resistance to bile salts and cell wall integrity. Given that EpaX is enriched in hospital-adapted isolates, this study points to the importance of the epa variability as a key determinant for enterococcal intestinal colonization.


Assuntos
Antígenos de Superfície/metabolismo , Enterococcus faecalis/crescimento & desenvolvimento , Enterococcus faecalis/metabolismo , Intestinos/microbiologia , Polissacarídeos/metabolismo , Animais , Antígenos de Superfície/genética , Ácidos e Sais Biliares/genética , Ácidos e Sais Biliares/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Resistência Microbiana a Medicamentos , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Genes Bacterianos , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Masculino , Camundongos , Microbiota/genética , Polissacarídeos/genética , Ramnose/metabolismo
5.
BMC Microbiol ; 15: 112, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-26003173

RESUMO

BACKGROUND: Mechanisms underlying the transition from commensalism to virulence in Enterococcus faecalis are not fully understood. We previously identified the enterococcal leucine-rich protein A (ElrA) as a virulence factor of E. faecalis. The elrA gene is part of an operon that comprises four other ORFs encoding putative surface proteins of unknown function. RESULTS: In this work, we compared the susceptibility to phagocytosis of three E. faecalis strains, including a wild-type (WT), a ΔelrA strain, and a strain overexpressing the whole elr operon in order to understand the role of this operon in E. faecalis virulence. While both WT and ΔelrA strains were efficiently phagocytized by RAW 264.7 mouse macrophages, the elr operon-overexpressing strain showed a decreased capability to be internalized by the phagocytic cells. Consistently, the strain overexpressing elr operon was less adherent to macrophages than the WT strain, suggesting that overexpression of the elr operon could confer E. faecalis with additional anti-adhesion properties. In addition, increased virulence of the elr operon-overexpressing strain was shown in a mouse peritonitis model. CONCLUSIONS: Altogether, our results indicate that overexpression of the elr operon facilitates the E. faecalis escape from host immune defenses.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/fisiologia , Óperon , Peritonite/microbiologia , Fagocitose , Animais , Aderência Bacteriana , Proteínas de Bactérias/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Enterococcus faecalis/genética , Enterococcus faecalis/patogenicidade , Regulação Bacteriana da Expressão Gênica , Infecções por Bactérias Gram-Positivas/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Macrófagos/metabolismo , Camundongos , Virulência
6.
mBio ; 11(2)2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345640

RESUMO

All enterococci produce a complex polysaccharide called the enterococcal polysaccharide antigen (EPA). This polymer is required for normal cell growth and division and for resistance to cephalosporins and plays a critical role in host-pathogen interaction. The EPA contributes to host colonization and is essential for virulence, conferring resistance to phagocytosis during the infection. Recent studies revealed that the "decorations" of the EPA polymer, encoded by genetic loci that are variable between isolates, underpin the biological activity of this surface polysaccharide. In this work, we investigated the structure of the EPA polymer produced by the high-risk enterococcal clonal complex Enterococcus faecalis V583. We analyzed purified EPA from the wild-type strain and a mutant lacking decorations and elucidated the structure of the EPA backbone and decorations. We showed that the rhamnan backbone of EPA is composed of a hexasaccharide repeat unit of C2- and C3-linked rhamnan chains, partially substituted in the C3 position by α-glucose (α-Glc) and in the C2 position by ß-N-acetylglucosamine (ß-GlcNAc). The so-called "EPA decorations" consist of phosphopolysaccharide chains corresponding to teichoic acids covalently bound to the rhamnan backbone. The elucidation of the complete EPA structure allowed us to propose a biosynthetic pathway, a first essential step toward the design of antimicrobials targeting the synthesis of this virulence factor.IMPORTANCE Enterococci are opportunistic pathogens responsible for hospital- and community-acquired infections. All enterococci produce a surface polysaccharide called EPA (enterococcal polysaccharide antigen) required for biofilm formation, antibiotic resistance, and pathogenesis. Despite the critical role of EPA in cell growth and division and as a major virulence factor, no information is available on its structure. Here, we report the complete structure of the EPA polymer produced by the model strain E. faecalis V583. We describe the structure of the EPA backbone, made of a rhamnan hexasaccharide substituted by Glc and GlcNAc residues, and show that teichoic acids are covalently bound to this rhamnan chain, forming the so-called "EPA decorations" essential for host colonization and pathogenesis. This report represents a key step in efforts to identify the structural properties of EPA that are essential for its biological activity and to identify novel targets to develop preventive and therapeutic approaches against enterococci.


Assuntos
Antígenos de Bactérias/química , Enterococcus faecalis/metabolismo , Polissacarídeos/química , Antígenos de Bactérias/metabolismo , Desoxiaçúcares/química , Desoxiaçúcares/metabolismo , Humanos , Mananas/química , Mananas/metabolismo , Polissacarídeos/metabolismo , Ácidos Teicoicos/química , Ácidos Teicoicos/metabolismo , Enterococos Resistentes à Vancomicina/metabolismo
7.
Microbiology (Reading) ; 155(Pt 11): 3564-3571, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19696101

RESUMO

Despite the existence of various virulence factors in the Enterococcus genus, enterococcal virulence is still a debated issue. A main consideration is the detection of the same virulence genes in strains isolated from nosocomial or community-acquired infections, and from food products. The goal of this study was to evaluate the roles of two well-characterized enterococcal virulence factors, Fsr and gelatinase, in the potential virulence of Enterococcus faecalis food strains. Virulence of unrelated Enterococcus isolates, including dairy strains carrying fsr and gelE operons, was compared in the Galleria mellonella insect model. E. faecalis dairy strains were able to kill larvae and were as virulent as strain OG1RF, one of the most widely used for virulence studies. In contrast, Enterococcus durans and Enterococcus faecium strains were avirulent or poorly virulent for G. mellonella. To evaluate the role of fsrB and gelE in virulence of E. faecalis dairy strains, both genes were deleted independently in two strains. The Delta fsrB and Delta gelE deletion mutants both produced a gelatinase-negative phenotype. Although both mutations significantly attenuated virulence in G. mellonella, the Delta fsrB strains were more strongly attenuated. These results agree with previous findings suggesting the involvement of fsrB in the control of other cell functions relevant to virulence. Our work demonstrates that the presence of functional fsrB, and to a lesser extent gelE, in dairy enterococci should be considered with caution.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/patogenicidade , Gelatinases/genética , Fatores de Virulência/genética , Animais , DNA Bacteriano/genética , Enterococcus faecalis/enzimologia , Enterococcus faecalis/genética , Deleção de Genes , Mariposas/microbiologia , Óperon , Análise de Sequência de DNA , Virulência
8.
Sci Rep ; 9(1): 8926, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222056

RESUMO

Enterococci are subdominant members of the human gastrointestinal microbiota. Enterococcus faecalis is generally harmless for healthy individuals, but it can cause a diverse range of infections in immunodeficient or elderly patients with severe underlying diseases. In this study, we analysed the levels of intestinal translocation of indigenous enterococci in C57BL/6, CF-1 and CX3CR1-/- mice upon clindamycin antibiotic-induced dysbiosis. We found that C57BL/6 was the most permissive model for enterococcal translocation and that initiation of E. faecalis translocation coincided with a threshold of enterococcal colonisation in the gut lumen, which once reached, triggered E. faecalis dissemination to deeper organs. We showed that the extent to which E. faecalis clinical strain VE14821 competed with indigenous enterococci differed between the C57BL/6 and CX3CR1-/- models. Finally, using a simplified gnotobiotic model, we observed E. faecalis crossing an intact intestinal tract using intestinal epithelial cells as one route to reach the lamina propria. Our study opens new perspectives for assessing the effect of various immunodeficiencies and for investigating mechanisms underlying enterococcal translocation.


Assuntos
Enterococcus/crescimento & desenvolvimento , Microbioma Gastrointestinal , Animais , Transporte Biológico , Receptor 1 de Quimiocina CX3C/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
mSphere ; 4(4)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292230

RESUMO

Commensal and generally harmless in healthy individuals, Enterococcus faecalis causes opportunistic infections in immunocompromised patients. Plasmid-cured E. faecalis strain VE14089, derived from sequenced reference strain V583, is widely used for functional studies due to its improved genetic amenability. Although strain VE14089 has no major DNA rearrangements, with the exception of an ∼20-kb integrated region of pTEF1 plasmid, the strain presented significant growth differences from the V583 reference strain of our collection (renamed VE14002). In the present study, genome sequencing of strain VE14089 identified additional point mutations. Excision of the integrated pTEF1 plasmid region and sequential restoration of wild-type alleles showing nonsilent mutations were performed to obtain the VE18379 reference-derivative strain. Recovery of the growth ability of the restored VE18379 strain at a level similar to that seen with the reference strain points to GreA and Spx as bacterial fitness determinants. Virulence potential in Galleria mellonella and intestinal colonization in mouse demonstrated host adaptation of the VE18379 strain equivalent to VE14002 host adaptation. We further demonstrated that deletion of the 16.8-kb variable region of the epa locus recapitulates the key role of Epa decoration in host adaptation, providing a genetic system to study the role of specific epa-variable regions in host adaptation independently of other genetic variations.IMPORTANCEE. faecalis strain VE14089 was derived from V583 cured of its plasmids. Although VE14089 had no major DNA rearrangements, it presented significant growth and host adaptation differences from the reference strain V583 of our collection. To construct a strain with better fitness, we sequenced the genome of VE14089, identified single nucleotide polymorphisms (SNPs), and repaired the genes that could account for these changes. Using this reference-derivative strain, we provide a novel genetic system to understand the role of the variable region of epa in the enterococcal lifestyle.


Assuntos
Proteínas de Bactérias/genética , Enterococcus faecalis/genética , Aptidão Genética , Polissacarídeos Bacterianos/genética , Animais , Enterococcus faecalis/patogenicidade , Genoma Bacteriano , Larva/microbiologia , Camundongos , Mariposas/microbiologia , Fenótipo , Mutação Puntual , Polimorfismo de Nucleotídeo Único , Virulência , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
10.
Int J Food Microbiol ; 125(2): 176-81, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18554738

RESUMO

The objective of this study was to determine i) if Camembert cheese micro-organisms could be detected in fecal samples after regular consumption by human subjects and ii) the consequence of this consumption on global metabolic activities of the host colonic microbiota. An open human protocol was designed where 12 healthy volunteers were included: a 2-week period of fermented products exclusion followed by a 4-weeks Camembert ingestion period where 2x40 g/day of Camembert cheese was consumed. Stools were collected from the volunteers before consumption, twice during the ingestion period (2nd and 4th week) and once after a wash out period of 2 weeks. During the consumption of Camembert cheese, high levels of Lactococcus lactis and Leuconostoc mesenteroides were measured in fecal samples using real-time quantitative PCR, reaching median values of 8.2 and 7.5 Log(10) genome equivalents/g of stool. For Ln. mesenteroides, persistence was observed 15 days after the end of Camembert consumption. The survival of Geotrichum candidum was also assessed and the fecal concentration reached a median level of 7.1 Log(10) CFU/g in stools. Except a decreasing trend of the nitrate reductase activity, no significant modification was shown in the metabolic activities during this study.


Assuntos
Queijo/microbiologia , Colo/microbiologia , Fezes/microbiologia , Lactobacillus/crescimento & desenvolvimento , Streptococcus thermophilus/crescimento & desenvolvimento , Adulto , Contagem de Colônia Microbiana , Estudos Cross-Over , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Fúngico/química , DNA Fúngico/genética , Feminino , Microbiologia de Alimentos , Geotrichum/crescimento & desenvolvimento , Geotrichum/isolamento & purificação , Geotrichum/metabolismo , Humanos , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo , Masculino , Nitrato Redutase/metabolismo , Reação em Cadeia da Polimerase/métodos , Streptococcus thermophilus/isolamento & purificação , Streptococcus thermophilus/metabolismo , Fatores de Tempo
11.
J Pediatr Gastroenterol Nutr ; 46(5): 580-8, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18493215

RESUMO

OBJECTIVE: To test the safety and effect on faecal microbiota of a formula with prebiotic oligosaccharides alone or in combination with acidic oligosaccharides in infants at the age of partial formula feeding. PATIENTS AND METHODS: The study was a double-blind, placebo-controlled, randomised intervention trial in which 82 healthy, full-term, partially breast-fed children, from 1 week to 3 months old, were given 1 of the following formulae: whey-based formula (control group), whey-based formula with galacto- and long-chain fructo-oligosaccharides (scGOS/lcFOS group), or whey-based formula with galacto- and long-chain fructo-oligosaccharides added with pectin-derived acidic oligosaccharides (scGOS/lcFOS/pAOS group). Children were studied for the duration of the partial formula feeding period and every 2 weeks for 2 months after breast-feeding cessation. The total bacteria count and the proportion of 7 bacterial families were determined using in situ hybridisation coupled to flow cytometry. RESULTS: The total bacterial count did not alter with time or type of feeding (9.9 +/- 0.1 log10 cells per gram wet weight). Compared with the control group, there was an increase of the Bifidobacterium genus (P = 0.0001), and a decrease of proportions for the Bacteroides group (P = 0.02) and the Clostridium coccoides group (P = 0.01) in both oligosaccharide groups. The proportion of bifidobacteria was significantly higher in the scGOS/lcFOS/pAOS compared with the scGOS/lcFOS group (P < 0.01). CONCLUSIONS: Infant formulae appear to be clinically safe and effective on infant microbiota. They minimize the alteration of faecal microbiota after cessation of breast-feeding and promote bifidobacteria proportions, with a stronger effect when acidic oligosaccharides are present.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Fezes/microbiologia , Fórmulas Infantis , Fenômenos Fisiológicos da Nutrição do Lactente/fisiologia , Oligossacarídeos/administração & dosagem , Probióticos/administração & dosagem , Bacteroides/crescimento & desenvolvimento , Clostridium/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Método Duplo-Cego , Feminino , Citometria de Fluxo , Humanos , Concentração de Íons de Hidrogênio , Hibridização In Situ , Lactente , Recém-Nascido , Intestinos/microbiologia , Masculino , Oligossacarídeos/química
12.
Sci Rep ; 8(1): 5098, 2018 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-29572473

RESUMO

Enterococci, in particular vancomycin-resistant enterococci (VRE), are a leading cause of hospital-acquired infections. Promoting intestinal resistance against enterococci could reduce the risk of VRE infections. We investigated the effects of two Lactobacillus strains to prevent intestinal VRE. We used an intestinal colonisation mouse model based on an antibiotic-induced microbiota dysbiosis to mimic enterococci overgrowth and VRE persistence. Each Lactobacillus spp. was administered daily to mice starting one week before antibiotic treatment until two weeks after antibiotic and VRE inoculation. Of the two strains, Lactobacillus paracasei CNCM I-3689 decreased significantly VRE numbers in the feces demonstrating an improvement of the reduction of VRE. Longitudinal microbiota analysis showed that supplementation with L. paracasei CNCM I-3689 was associated with a better recovery of members of the phylum Bacteroidetes. Bile salt analysis and expression analysis of selected host genes revealed increased level of lithocholate and of ileal expression of camp (human LL-37) upon L. paracasei CNCM I-3689 supplementation. Although a direct effect of L. paracasei CNCM I-3689 on the VRE reduction was not ruled out, our data provide clues to possible anti-VRE mechanisms supporting an indirect anti-VRE effect through the gut microbiota. This work sustains non-antibiotic strategies against opportunistic enterococci after antibiotic-induced dysbiosis.


Assuntos
Bacteroidetes/fisiologia , Lacticaseibacillus paracasei/fisiologia , Probióticos/administração & dosagem , Enterococos Resistentes à Vancomicina/fisiologia , Animais , Antibacterianos/farmacologia , Bacteroidetes/efeitos dos fármacos , Clindamicina/farmacologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Intestinos/microbiologia , Masculino , Camundongos , Probióticos/farmacologia , Enterococos Resistentes à Vancomicina/efeitos dos fármacos
13.
Carcinogenesis ; 28(11): 2419-25, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17660508

RESUMO

2-amino-3-methylimidazo[4,5-f]quinoline (IQ) is a genotoxic/carcinogenic compound formed in meat and fish during cooking. Following absorption in the upper part of the gastrointestinal tract, IQ is mainly metabolized in the liver by xenobiotic-metabolizing enzymes. Among them, UDP-glucuronosyl transferases lead to harmless glucuronidated derivatives that are partly excreted via the bile into the digestive lumen, where they come into contact with the resident microbiota. The purpose of this study is to investigate if microbial beta-glucuronidase could contribute to IQ genotoxicity by releasing reactive intermediates from IQ glucuronides. We constructed a beta-glucuronidase-deficient isogenic mutant from a wild-type Escherichia coli strain carrying the gene uidA encoding this enzyme and compared the genotoxicity of IQ in gnotobiotic rats monoassociated with the wild-type or the mutant strain. The Comet assay performed on colonocytes and hepatocytes showed that the presence of beta-glucuronidase in the digestive lumen dramatically increased (3-fold) the genotoxicity of IQ in the colon. This deleterious effect was paralleled by slight modifications of the pharmacokinetics of IQ. The urinary and faecal excretion of the parent compound and its conjugated derivatives reached a maximum 24-48 h after gavage in rats harbouring the beta-glucuronidase-deficient strain. In rats associated with the wild-type strain, the kinetics of urinary excretion showed a biphasic curve with a second, smaller peak after 144 h. This is the first in vivo demonstration that bacterial beta-glucuronidase plays a pivotal role in the genotoxicity of a common food-borne carcinogen.


Assuntos
Bactérias/enzimologia , Colo/efeitos dos fármacos , Glucuronidase/metabolismo , Intestinos/enzimologia , Mutagênicos/toxicidade , Quinolinas/toxicidade , Animais , Cromatografia Líquida de Alta Pressão , Ensaio Cometa , Fezes , Humanos , Masculino , Espectrometria de Massas , Quinolinas/urina , Ratos , Ratos Endogâmicos F344
14.
FEMS Microbiol Ecol ; 60(3): 513-20, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17428302

RESUMO

Molecular methods based on 16S rRNA gene sequence analyses have shown that bacteria of the Clostridium leptum subgroup are predominant in the colonic microbiota of healthy humans; this subgroup includes bacteria that produce butyrate, a source of energy for intestinal epithelial cells. To improve our understanding of the species within this important group, separation methods using fluorescence-activated cell sorting (FACS) and specific PCR were combined with 16S rRNA gene sequence analyses. FACS was developed for bacteria labelled in situ with two rRNA oligonucleotide probes, namely EUB338-FITC for total bacteria and Clep866-CY5/cp or Fprau645-CY5 for bacteria of the C. leptum subgroup. Bacterial cell sorting allowed a selective recovery of members of the C. leptum subgroup from the human microbiota with efficiencies as high as 95%. Group-specific PCR amplification of the C. leptum subgroup was developed, and temporal thermal gradient gel electrophoresis showed host-specific profiles with low complexity, with a sharing of common bands between individuals and bands stable over 2 months for the same individual. A library of 16S rRNA gene cloned sequences (106 sequences) was prepared with DNA obtained from both separation methods, and 15 distinct phylotypes were identified, among which 10 have no cultivable or currently cultivated representative in reference collections.


Assuntos
Clostridium/isolamento & purificação , Colo/microbiologia , Citometria de Fluxo , Reação em Cadeia da Polimerase , Clostridium/classificação , Clostridium/genética , DNA Bacteriano/genética , Fezes/microbiologia , Genes de RNAr , Humanos , Hibridização in Situ Fluorescente , Dados de Sequência Molecular , Oligonucleotídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
15.
Inflamm Bowel Dis ; 12(2): 106-11, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16432374

RESUMO

BACKGROUND: Abnormalities have been described in the fecal microbiota of patients with IBD, but it is not known whether they are specific for inflammatory bowel disease (IBD) or to some extent common to other forms of colitis. The aim of this study was to compare the bacterial composition of the dominant fecal microbiota in patients with Crohn's disease (CD), ulcerative colitis (UC), infectious colitis (IC), and in healthy subjects (HS). METHODS: Fluorescent in situ hybridization adapted to flow cytometry was used to analyze the bacterial composition of fecal samples from 13 patients with active CD, 13 patients with active UC, 5 patients with IC, and 13 HS. We used 6 group-specific probes targeting 16S rRNA and spanning the main phylogenetic groups of the fecal microbiota. RESULTS: A significantly higher proportion of the total fecal bacteria were recognized by the 6 probes in HS (86.6%+/-12.7) and in IC (84.0%+/-11.7) than in patients with IBD (70.9%+/-15 in CD and 60.1%+/-25.7 in UC). The Clostridium coccoides group was reduced in UC (20.0%+/-13.3 versus 42.0%+/-12.0 in HS; P<.001), whereas the C leptum group was reduced in CD (13.1%+/-11.9 versus 25.2%+/-14.2 in HS; P=.002). The Bacteroides group was more abundant in IC (36.4%+/-22.9) than in the other 3 groups (13.8%+/-11.8 in CD, 11.7%+/-11.7 in UC, 12.1%+/-7.0 in HS; P<.001 for all 3 comparisons). CONCLUSIONS: In IBD the dominant fecal microbiota comprises unusual bacterial species. Moreover, CD and UC fecal microbiota harbor specific discrepancies and differ from that of IC and healthy subjects.


Assuntos
Colite Ulcerativa/microbiologia , Doença de Crohn/microbiologia , Fezes/microbiologia , Adulto , Sequência de Bases , Estudos de Casos e Controles , Estudos de Coortes , Colite/microbiologia , DNA Bacteriano/análise , Feminino , Citometria de Fluxo , Humanos , Doenças Inflamatórias Intestinais/microbiologia , Mucosa Intestinal/microbiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Reação em Cadeia da Polimerase/métodos , Probabilidade , Prognóstico , Valores de Referência , Fatores de Risco , Índice de Gravidade de Doença , Estatísticas não Paramétricas
16.
J Microbiol Methods ; 67(1): 150-61, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16647148

RESUMO

Clostridium perfringens and Clostridium difficile are pathogenic clostridia potentially associated with gastrointestinal infections and allergy in infants. To enable the molecular detection and quantification of these species in the infant gut, two 16S rRNA oligonucleotide probes were developed: Cdif198 for C. difficile and Cperf191 for C. perfringens. We defined the probes in silico using the RDP sequence database. The probes were then validated using FISH combined with flow cytometry and a collection of target and non-target strains, and faecal samples inoculated with dilutions of C. difficile and C. perfringens strains. These new probes were used to assess the composition of the intestinal microbiota of 33 infants of 1.5 to 18.5 months of age, associated with a panel of 8 probes targeting the predominant faecal bacterial groups of humans. The probes designed allowed detection and quantification of the relative proportions of C. difficile (0.5+/-1.0%) and C. perfringens (2.1+/-2.3%) in the microbiota of infants.


Assuntos
Clostridioides difficile/genética , Infecções por Clostridium/microbiologia , Clostridium perfringens/genética , Hibridização in Situ Fluorescente/métodos , RNA Ribossômico 16S/análise , Clostridioides difficile/química , Clostridioides difficile/isolamento & purificação , Clostridium perfringens/química , Clostridium perfringens/isolamento & purificação , Fezes/microbiologia , Citometria de Fluxo/métodos , Humanos , Lactente , Sondas de Oligonucleotídeos/química
17.
Syst Appl Microbiol ; 28(5): 454-64, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16094872

RESUMO

Target site inaccessibility represents a significant problem for fluorescent in situ hybridisation (FISH) of 16S rRNA oligonucleotide probes. For this reason, the Clep1156 probe targeting 16S rRNA of the Clostridium leptum phylogenetic subgroup used for dot blot experiments could not be used until now for FISH. Considering that bacteria from the C. leptum subgroup are very abundant in the human faecal microbiota and may play a significant role in host health, we have used unlabelled helper and competitor oligonucleotides to improve the 16S rRNA in situ accessibility and specificity of the Clep1156 probe and applied this approach to enumerate C. leptum bacteria in this ecosystem. Nine C. leptum target strains and five non-target strains were selected to develop and validate the helper-competitor strategy. Depending on the target strains, the use of helpers enhanced the fluorescence intensity signal of Clep1156 from 0.4-fold to 8.4-fold with a mean value of 3.6-fold, switching this probe from the brightness class V-VI (masked sites) to III-IV (accessible sites). The simultaneous use of helper and competitor oligonucleotides with Clep1156 probe allowed the expected specificity without disturbing in situ accessibility. Quantified by FISH combined with flow cytometry, C. leptum bacteria in human faecal samples (n=22) represented 19 +/- 7% of bacteria on average [4.9-37.5]. We conclude that helper oligonucleotides are very useful to circumvent the problem of target site in situ accessibility, especially when probe design is limited to only one 16S rRNA area and that helpers and competitors may be efficiently combined.


Assuntos
Clostridium/isolamento & purificação , Contagem de Colônia Microbiana/métodos , Fezes/microbiologia , RNA Ribossômico 16S/genética , Sequência de Bases , Clostridium/genética , Citometria de Fluxo/métodos , Humanos , Hibridização in Situ Fluorescente/métodos , Dados de Sequência Molecular , Sondas de Oligonucleotídeos , Oligonucleotídeos
18.
FEMS Microbiol Lett ; 362(8): fnv012, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25667231

RESUMO

Vancomycin-resistant enterococci (VRE) represent major opportunistic pathogens in immunocompromised populations. Particularly adapted to the hospital environment, VRE efficiently colonize the gastrointestinal (GI) tract of patients. Furthermore, certain circumstances of antibiotic-induced dysbiosis of the gut microbiota contribute to colonization, overgrowth and persistence of VRE in the GI tract, increasing the risk of infection in critically ill and/or severally immunocompromised patients. VRE treatment with antibiotics remains challenging due to the robustness and ability of enterococci to adapt to harsh conditions and to acquire novel resistance genes. Reducing VRE intestinal colonization, overgrowth and carriage has thus become an important issue to reduce the risk of infection and dissemination. This review summarizes the knowledge of the conditions favoring VRE colonization and persistence in the GI tract and focuses on the strategies to reduce overgrowth or persistence of VRE in the GI tract based on the oral administration of probiotic or commensal bacteria in human studies and in animal models, and on the potential underlying mechanisms of the anti-VRE effect.


Assuntos
Bactérias/crescimento & desenvolvimento , Trato Gastrointestinal/microbiologia , Probióticos/administração & dosagem , Simbiose , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Animais , Antibacterianos/efeitos adversos , Modelos Animais de Doenças , Humanos , Enterococos Resistentes à Vancomicina/patogenicidade
19.
Microbiology (Reading) ; 144(3): 771-780, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33757231

RESUMO

The distribution of four classes of related plasmid replication genes (repC) within three field populations of Rhizobium leguminosarum in France, Germany and the UK was investigated using RFLP, PCR-RFLP and plasmid profile analysis. The results suggest that the four repC classes are compatible: when two or more different repC sequences are present in a strain they are usually associated with different plasmids. Furthermore, classical incompatibility studies in which a Tn5-labelled plasmid with a group IV repC sequence was transferred into field isolates by conjugation demonstrated that group IV sequences are incompatible with each other, but compatible with the other repC groups. This supports the idea that the different repC groups represent different incompatibility groups. The same field isolates were also screened for chromosomal (plac12) and symbiotic gene (nodD-F region) variation. Comparison of these and the plasmid data suggest that plasmid transfer does occur within field populations of R. leguminosarum but that certain plasmid-chromosome combinations are favoured.

20.
J Microbiol Methods ; 59(2): 263-70, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15369862

RESUMO

This work was conducted to assess the accuracy of in situ hybridization to show differences in human microflora composition between volunteers and to optimize the storage of fecal samples to allow delayed analysis of gut microflora composition in humans. Fecal samples from 25 healthy subjects (14 women, 11 men aged 24-51) were collected. The samples were fixed in 4% Paraformaldehyde (PFA) solution at 4 degrees C overnight and stored at -70 degrees C. Twenty samples were analysed to quantify the variation due to interindividual differences in the composition of fecal microflora. The five remaining samples were stored either after PFA fixation or directly frozen at -70 degrees C and were monitored on a 12-month period. The fecal microflora was analysed by in situ hybridization combined with flow cytometry detection. Ribosomal RNA-targeted probes were used to assess the relative proportions of four phylogenetic groups: Clostridium coccoides-Eubacterium rectale (Erec 482), Bacteroides (Bac 303), Faecalibacterium prausnitzii (Fprau 645) and Bifidobacterium (Bif 164). Our results demonstrated that the method used is adapted to detect significant differences in fecal microflora composition in humans. Moreover, samples stored in PFA solution demonstrated a stable composition even after 8 months of storage. Conversely, frozen samples were less stable as the Bifidobacterium and C. coccoides-E. rectale groups showed significant differences after 2 months of storage. In conclusion, the fecal microflora composition can be analysed up to 8 months after 4% PFA fixation and storage at -70 degrees C. It represents an extended time compared with the 2-month period currently recommended. This will give more flexibility for applying this technology in epidemiological studies including a large number of samples.


Assuntos
Bacteroides/isolamento & purificação , Bifidobacterium/isolamento & purificação , Clostridium/isolamento & purificação , Fezes/microbiologia , Citometria de Fluxo/métodos , Fusobacterium/isolamento & purificação , Hibridização in Situ Fluorescente/métodos , Adulto , Bacteroides/genética , Bifidobacterium/genética , Clostridium/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Feminino , Fusobacterium/genética , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/química , RNA Ribossômico 16S/genética , Manejo de Espécimes/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA