Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genet Mol Biol ; 41(3): 671-691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30235396

RESUMO

Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean. The 36,350 generated unisequences provided an overview of the main genes and biological pathways that were active in the fungus during the infection cycle. We also identified the most expressed transcripts, including sequences similar to other fungal virulence and signaling proteins. Enriched P. pachyrhizi transcripts in the resistant (PI561356) soybean genotype were related to extracellular matrix organization and metabolic signaling pathways and, among infection structures, in amino acid metabolism and intracellular transport. Unisequences were further grouped into gene families along predicted sequences from 15 other fungi and oomycetes, including rust fungi, allowing the identification of conserved multigenic families, as well as being specific to P. pachyrhizi. The results revealed important biological processes observed in P. pachyrhizi, contributing with information related to fungal biology and, consequently, a better understanding of ASR.

2.
Plant Physiol Biochem ; 151: 526-534, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32305819

RESUMO

The biotrophic fungus Phakopsora pachyrhizi is currently the major pathogen affecting soybean production worldwide. It has already been suggested for the non-host interaction between P. pachyrhizi and Arabidopsis thaliana that the fungus in early infection induces jasmonic acid (JA) pathway to the detriment of the salicylic acid (SA) pathway as a mechanism to the establishment of infection. In this study, we verified that this mechanism might also be occurring during the compatible interaction in soybean (Glycine max L. Merril). It was demonstrated that P. pachyrhizi triggers a JA pathway during the early and late stages of infection in a susceptible soybean cultivar. The expression of the GmbZIP89 was induced in a biphasic profile, similarly to other JA responsive genes, which indicates a new marker gene for this signaling pathway. Additionally, plants silenced for GmbZIP89 (iGmZIP89) by the virus-induced gene silencing (VIGS) approach present lower severity of infection and higher expression of pathogenesis related protein 1 (PR1). The lower disease severity showed that the iGmbZIP89 plants became more resistant to infection. These data corroborate the hypothesis that the GmbZIP89 may be a resistance negative regulator. In conclusion, we demonstrated that P. pachyrhizi mimics a necrotrophic fungus and activates the JA/ET pathway in soybean. It is possible to suppose that its direct penetration on epidermal cells or fungal effectors may modulate the expression of target genes aiming the activation of the JA pathway and inhibition of SA defense.


Assuntos
Ciclopentanos , Glycine max , Interações Hospedeiro-Patógeno , Oxilipinas , Phakopsora pachyrhizi , Transdução de Sinais , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno/fisiologia , Oxilipinas/metabolismo , Phakopsora pachyrhizi/fisiologia , Doenças das Plantas/microbiologia , Glycine max/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA