Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Neurobiol Dis ; 95: 204-9, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27477054

RESUMO

Misfolding of the prion protein (PrP) is the key step in the transmission of spongiform pathologies in humans and several animals. Although PrP is highly conserved in mammals, a few changes in the sequence of endogenous PrP are proposed to confer protection to dogs, which were highly exposed to prion during the mad-cow epidemics. D159 is a unique amino acid found in PrP from dogs and other canines that was shown to alter surface charge, but its functional relevance has never been tested in vivo. Here, we show in transgenic Drosophila that introducing the N159D substitution on mouse PrP decreases its turnover. Additionally, mouse PrP-N159D demonstrates no toxicity and accumulates no pathogenic conformations, suggesting that a single D159 substitution is sufficient to prevent PrP conformational change and pathogenesis. Understanding the mechanisms mediating the protective activity of D159 is likely to lessen the burden of prion diseases in humans and domestic animals.


Assuntos
Sequência de Aminoácidos/fisiologia , Príons/metabolismo , Animais , Animais Geneticamente Modificados , Ácido Aspártico/genética , Ácido Aspártico/metabolismo , Cães , Drosophila melanogaster , Camundongos , Príons/genética
2.
Mol Cell Biol ; 11(8): 4157-64, 1991 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-1712904

RESUMO

The enzyme hypoxanthine phosphoribosyltransferase (HPRT) catalyzes the metabolic salvage of the purine bases hypoxanthine and guanine. We previously characterized the genomic structure of the human HPRT gene and described its promoter sequence. In this report, we identify cis-acting transcriptional control regions of the human HPRT gene by linking various 5'-flanking sequences to the bacterial chloramphenicol acetyltransferase gene. The sequence from positions -219 to -122 relative to the translation initiation site is required for maximal expression of this gene, and it functions equally in both normal and reverse orientations. In addition, a cis-acting negative element is present in the region spanning from positions -570 to -388. This negative element can also repress promoters of heterologous genes, such as those of adenosine deaminase and dihydrofolate reductase, which are structurally and functionally similar to the human HPRT promoter. Furthermore, this repressor element functions independently of its orientation but appears to be distance dependent. In vivo competition assays demonstrated that the trans-acting factor(s) that binds to this negative element specifically inhibits human HPRT promoter activity. Taken together, these data localize cis-acting sequences important in the regulation of human HPRT gene expression and should allow the study of protein-DNA interactions which modulate the transcription of this gene.


Assuntos
Hipoxantina Fosforribosiltransferase/genética , Regiões Promotoras Genéticas , Sequências Reguladoras de Ácido Nucleico , Animais , Northern Blotting , Linhagem Celular , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Cricetinae , Expressão Gênica , Vetores Genéticos , Humanos , Cinética , Plasmídeos , RNA/genética , RNA/isolamento & purificação , Mapeamento por Restrição , Ativação Transcricional , Transfecção
3.
Mol Cell Biol ; 15(12): 6561-71, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8524221

RESUMO

The hypoxanthine phosphoribosyltransferase (HPRT) gene is constitutively expressed at low levels in all tissues but at higher levels in the brain; the significance and mechanism of this differential expression are unknown. We previously identified a 182-bp element (hHPRT-NE) within the 5'-flanking region of the human HPRT (hHPRT) gene, which is involved not only in conferring neuronal specificity but also in repressing gene expression in nonneuronal tissues. Here we report that this element interacts with different nuclear proteins, some of which are present specifically in neuronal cells (complex I) and others of which are present in cells showing constitutive expression of the gene (complex II). In addition, we found that complex I factors are expressed in human NT2/D1 cells following induction of neuronal differentiation by retinoic acid. This finding correlates with an increase of HPRT gene transcription following neuronal differentiation. We also mapped the binding sites for both complexes to a 60-bp region (Ff; positions -510 to -451) which, when analyzed in transfection assays, functioned as a repressor element analogous to the full-length hHPRT-NE sequence. Methylation interference footprintings revealed a minimal unique DNA motif, 5'-GGAAGCC-3', as the binding site for nuclear proteins from both neuronal and nonneuronal sources. However, site-directed mutagenesis of the footprinted region indicated that different nucleotides are essential for the associations of these two complexes. Moreover, UV cross-linking experiments showed that both complexes are formed by the association of several different proteins. Taken together, these data suggest that differential interaction of DNA-binding factors with this regulatory element plays a crucial role in the brain-preferential expression of the gene, and they should lead to the isolation of transcriptional regulators important in neuronal expression of the HPRT gene.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Hipoxantina Fosforribosiltransferase/genética , Neurônios/metabolismo , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , Encéfalo/enzimologia , Diferenciação Celular , Linhagem Celular , Cloranfenicol O-Acetiltransferase/biossíntese , Primers do DNA , Humanos , Hipoxantina Fosforribosiltransferase/biossíntese , Fígado/enzimologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Neurônios/citologia , Especificidade de Órgãos , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Mapeamento por Restrição , Transfecção
4.
Biochim Biophys Acta ; 1172(1-2): 49-54, 1993 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-8439570

RESUMO

We have isolated, cloned and achieved functional expression of the cDNAs for both 22 kDa and 20 kDa human growth hormone (hGH) isoforms. A selective cDNA cloning strategy was used to preferentially and simultaneously obtain both hGH 22 kDa and hGH 20 kDa cDNAs. These were used to construct minigenes which were subcloned into two eukaryotic expression vectors and then introduced transiently in COS-7 cells and stably into CHO cells in culture. Transfection assays in COS-7 cells of both minigenes allowed the detection of the secreted hGH 22 kDa and hGH 20 kDa. These hGHs isoforms secreted into COS-7 medium were able to specifically promote differentiation of 3T3-F442A preadipocytes to adipose cells. Adipocyte differentiation was quantitated by Oil Red O triacylglycerol staining or glycerophosphate dehydrogenase activity. Furthermore, stable CHO cell lines have been derived that produce these hGH isoforms.


Assuntos
Tecido Adiposo/citologia , Hormônio do Crescimento/genética , Hipófise/fisiologia , Células 3T3 , Tecido Adiposo/efeitos dos fármacos , Processamento Alternativo , Animais , Células CHO , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Clonagem Molecular , Cricetinae , DNA/genética , Variação Genética , Hormônio do Crescimento/biossíntese , Hormônio do Crescimento/farmacologia , Humanos , Camundongos , Peso Molecular , Família Multigênica , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/farmacologia , Mapeamento por Restrição , Transfecção
5.
Mech Dev ; 99(1-2): 177-81, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11091089

RESUMO

Here we describe and compare the expression patterns of the murine genes Lhx2 and Msx1 and their Drosophila orthologues apterous (ap) and muscle-segment homeobox (msh). We find that Lhx2 and Msx1 show complementary patterns of expression in most tissues including the neural and cranial epithelium, pituitary gland, olfactory organs, and neural tube; in contrast, Lhx2 and Msx1 are coexpressed in the developing limbs. Strikingly, the spatial relationship between ap and msh expression in Drosophila is very reminiscent of the expression of their murine orthologues. ap and msh show complementary expression in the leg and antennal imaginal discs, brain and ventral ganglion of the central nervous system (CNS), but both are coexpressed in the wing imaginal disc. These observations suggest conservation in the regulation of these genes between Drosophila and mice.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Homeodomínio/biossíntese , Fatores de Transcrição/biossíntese , Animais , Extremidades/embriologia , Proteínas de Fluorescência Verde , Hibridização In Situ , Proteínas com Homeodomínio LIM , Proteínas Luminescentes/metabolismo , Fator de Transcrição MSX1 , Camundongos , Microscopia de Fluorescência , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Tempo , Distribuição Tecidual , Asas de Animais/embriologia
6.
Gene ; 87(2): 291-4, 1990 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-2158929

RESUMO

We have constructed a new pair of plasmid vectors for the efficient expression of mammalian genes. The first of the new plasmids, pAVE1, was derived from pCMVcat [Foecking and Hofstetter, Gene 45 (1986) 101-105] by replacing the chloramphenicol acetyltransferase-encoding sequences in the latter for a multiple cloning site. Since it possesses the powerful enhancer-promoter unit of the immediate early gene of human cytomegalovirus, pAVE1 is ideal for the expression of mammalian genes. The second expression vector, pAVE2, resulted when the 3'-end flanking region from the human growth hormone-encoding gene (hGH) was incorporated in pAVE1. This region provides sequences for 3'-end processing and polyadenylation of primary transcripts. Thus, pAVE2 is suitable for expression of cDNAs in cultured cells, where introns have little effect on gene expression. To test our new vectors, we inserted the structural region of the chromosomal hGH gene into pAVE1, and its cDNA into pAVE2. By independently transfecting the resulting recombinant plasmids into COS-7 cells, we have achieved high levels of hGH transient expression with both vectors.


Assuntos
Regulação da Expressão Gênica , Vetores Genéticos , Plasmídeos , Células Cultivadas , Cloranfenicol O-Acetiltransferase/genética , Cloranfenicol O-Acetiltransferase/metabolismo , Clonagem Molecular , Citomegalovirus/genética , Elementos Facilitadores Genéticos , Genes , Hormônio do Crescimento/genética , Humanos , Regiões Promotoras Genéticas
7.
Schizophr Res ; 8(3): 211-21, 1993 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8094629

RESUMO

There is growing evidence that some genetic predisposition is important in the etiology of schizophrenia. We have sought to implicate a major gene by performing a candidate gene association study comparing the allele frequencies of seven restriction fragment length polymorphisms (RFLPs) at six loci in both a psychiatrically normal control group (N = 51) and an affected (schizophrenia or schizoaffective disorder) group (N = 55). Each group comprised Caucasians of northern European origin. The candidate areas (D5S39, D5S78, dopamine receptor D2 (DRD2), D11S29, porphobilinogen deaminase (PBGD), and D11S84) were selected on the basis of prior cytogenetic findings in schizophrenics, linkage studies, and/or implicated gene products. The presence of a polymorphic ApaLI site within the PBGD gene showed a significant association with the presence of illness (P = 0.02). The relative risk of possessing the allele with the ApaLI site was 2.10. No significant association was found with any of the six other RFLPs. Our data suggests that either the PBGD gene itself or an unknown gene linked to and/or in linkage disequilibrium with the PBGD locus predisposes some individuals to schizophrenia. Independent replication of these findings will be required to determine their relevance to schizophrenia.


Assuntos
Variação Genética , Hidroximetilbilano Sintase/genética , Esquizofrenia/genética , Psicologia do Esquizofrênico , Adolescente , Adulto , Alelos , Mapeamento Cromossômico , Desoxirribonucleases de Sítio Específico do Tipo II/genética , Feminino , Frequência do Gene/genética , Triagem de Portadores Genéticos , Ligação Genética/genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Escalas de Graduação Psiquiátrica , Esquizofrenia/diagnóstico
8.
EMBO J ; 19(11): 2602-14, 2000 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10835358

RESUMO

The LIM homeodomain (LIM-HD) protein Apterous (Ap) and its cofactor DLDB/CHIP control dorso- ventral (D/V) patterning and growth of Drosophila wing. To investigate the molecular mechanisms of Ap/CHIP function we altered their relative levels of expression and generated mutants in the LIM1, LIM2 and HD domains of Ap, as well as in the LIM-interacting and self-association domains of CHIP. Using in vitro and in vivo assays we found that: (i) the levels of CHIP relative to Ap control D/V patterning; (ii) the LIM1 and LIM2 domains differ in their contributions to Ap function; (iii) Ap HD mutations cause weak dominant negative effects; (iv) overexpression of ChipDeltaSAD mutants mimics Ap lack-of-function, and this dominant negative phenotype is caused by titration of Ap because it can be rescued by adding extra Ap; and (v) overexpression of ChipDeltaLID mutants also causes an Ap lack-of-function phenotype, but it cannot be rescued by extra Ap. These results support the model that the Ap-CHIP active complex in vivo is a tetramer.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Proteínas de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/fisiologia , Animais , Células Cultivadas , Dimerização , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Genes Homeobox , Genes Reporter , Teste de Complementação Genética , Proteínas de Insetos/genética , Proteínas com Homeodomínio LIM , Substâncias Macromoleculares , Morfogênese/genética , Proteínas Nucleares/genética , Fenótipo , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento
9.
Differentiation ; 63(3): 151-7, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9697309

RESUMO

Msx genes encode a family of homeoproteins that function as transcription repressors through protein-protein interactions. Here we show that Lhx2, a LIM-type homeoprotein, is a protein partner for Msx1 in vitro and in cellular extracts. The interaction between Msx1 and Lhx2 is mediated through the homeodomain-containing regions of both proteins. Interestingly, the LIM domains, which serve as protein interaction domains for other partners of Lhx2, are not required for the Msx1-Lhx2 association. We show that Msx1 and Lhx2 form a protein complex in the absence of DNA, and that DNA binding by either protein alone can occur at the expense of protein complex formation. The significance of this protein-protein interaction is underscored by the expression patterns of Msx1 and Lhx2, which are partially overlapping during murine embryogenesis. The description of Lhx2 as a protein partner for Msx1 suggests that the functional specificity of homeoproteins in vivo is determined by a balance between their association with DNA and their protein partners.


Assuntos
Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , DNA/metabolismo , Proteínas com Homeodomínio LIM , Botões de Extremidades/metabolismo , Fator de Transcrição MSX1 , Camundongos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
10.
EMBO J ; 17(23): 6846-53, 1998 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-9843490

RESUMO

Dorso-ventral axis formation in the Drosophila wing requires the localized accumulation of the Apterous LIM/homeodomain protein (Ap) in dorsal cells. Here we report that dLdb/Chip encodes a LIM-binding cofactor that controls Ap activity. Both lack and excess of dLdb/Chip function cause the same phenotype as apterous (ap) lack of function; i.e. dorsal to ventral transformations, generation of new wing margins, and wing outgrowths. These results indicate that the normal function of Ap in dorso-ventral compartmentalization requires the correct amount of the DLDB/CHIP co-factor, and suggest that the Ap and DLDB/CHIP proteins form a multimeric functional complex. In support of this model, we show that the dLdb/Chip excess-of-function phenotypes can be rescued by ap overexpression.


Assuntos
Proteínas de Drosophila , Proteínas de Homeodomínio/metabolismo , Proteínas de Insetos/fisiologia , Proteínas Nucleares/fisiologia , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Padronização Corporal , Drosophila/crescimento & desenvolvimento , Expressão Gênica , Cobaias , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas com Homeodomínio LIM , Camundongos , Mosaicismo , Mutagênese , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Asas de Animais
11.
J Neurosci Res ; 38(3): 259-67, 1994 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-7523686

RESUMO

Total deficiency of hypoxanthine phosphoribosyltransferase (HPRT) in humans causes the neurological disorder Lesch-Nyhan syndrome. The HPRT gene is expressed at basal levels in all tissues but at higher levels in the brain, the relevance and mechanism of which is unknown. To determine if cis-acting DNA elements play a role in the tissue-differential pattern of expression, we generated transgenic mice carrying different sequences of the human HPRT (hHPRT) promoter fused to the bacterial lacZ gene. We show that a 1.6 kb fragment of the hHPRT promoter contains essential information to direct beta-galactosidase expression preferentially to the basal ganglia, cerebral cortex, hippocampus, and several other areas of the forebrain. At least two elements within the 1.6 kb fragment appear to be required for neuronal expression. A 182 bp element (hHPRT-NE) represents one of these sequences and is involved not only in conferring neuronal specificity but also in repressing transgene expression in non-neuronal tissues. These studies provide molecular insight into the mechanism of increased HPRT expression in the brain.


Assuntos
Química Encefálica/fisiologia , Hipoxantina Fosforribosiltransferase/genética , Neurônios/metabolismo , Animais , Sequência de Bases , DNA/análise , Regulação da Expressão Gênica , Humanos , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , RNA/análise
12.
Proc Natl Acad Sci U S A ; 96(5): 2165-70, 1999 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-10051612

RESUMO

The Drosophila apterous (ap) gene encodes a protein of the LIM-homeodomain family. Many transcription factors of this class have been conserved during evolution; however, the functional significance of their structural conservation is generally not known. ap is best known for its fundamental role as a dorsal selector gene required for patterning and growth of the wing, but it also has other important functions required for neuronal fasciculation, fertility, and normal viability. We isolated mouse (mLhx2) and human (hLhx2) ap orthologs, and we used transgenic animals and rescue assays to investigate the conservation of the Ap protein during evolution. We found that the human protein LHX2 is able to regulate correctly ap target genes in the fly, causes the same phenotypes as Ap when ectopically produced, and most importantly rescues ap mutant phenotypes as efficiently as the fly protein. In addition, we found striking similarities in the expression patterns of the Drosophila and murine genes. Both mLhx2 and ap are expressed in the respective nerve cords, eyes, olfactory organs, brain, and limbs. These results demonstrate the conservation of Ap protein function across phyla and argue that aspects of its expression pattern have also been conserved from a common ancestor of insects and vertebrates.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Desenvolvimento Embrionário e Fetal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Linhagem Celular , Sequência Conservada , Cruzamentos Genéticos , DNA Complementar , Embrião de Mamíferos , Embrião não Mamífero/fisiologia , Extremidades/embriologia , Humanos , Proteínas com Homeodomínio LIM , Mamíferos , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
13.
Development ; 125(20): 3925-34, 1998 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-9735354

RESUMO

apterous specifies dorsal cell fate and directs outgrowth of the wing during Drosophila wing development. Here we show that, in vertebrates, these functions appear to be performed by two separate proteins. Lmx-1 is necessary and sufficient to specify dorsal identity and Lhx2 regulates limb outgrowth. Our results suggest that Lhx2 is closer to apterous than Lmx-1, yet, in vertebrates, Lhx2 does not specify dorsal cell fate. This implies that in vertebrates, unlike Drosophila, limb outgrowth can be dissociated from the establishment of the dorsoventral axis.


Assuntos
Padronização Corporal , Proteínas de Drosophila , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , N-Acetilglucosaminiltransferases , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Embrião de Galinha , Drosophila/genética , Biblioteca Gênica , Vetores Genéticos , Glucosiltransferases , Proteínas de Homeodomínio/genética , Hibridização In Situ , Proteínas de Insetos/análise , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas com Homeodomínio LIM , Dados de Sequência Molecular , Morfogênese , Proteínas/análise , Proteínas Proto-Oncogênicas/análise , Fatores de Transcrição/genética , Asas de Animais/embriologia , Proteína Wnt1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA