Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 38(7): e23596, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38597350

RESUMO

Myokines, released from the muscle, enable communication between the working muscles and other tissues. Their release during physical exercise is assumed to depend on immune-hormonal-metabolic interactions concerning mode (endurance or resistance exercise), duration, and intensity. This meta-analysis aims to examine the acute changes of circulating myokines inducing immunoregulatory effects caused by a bout of resistance exercise and to consider potential moderators of the results. Based on this selection strategy, a systematic literature search was conducted for resistance exercise intervention studies measuring interleukin (IL-) 6, IL-10, IL-1ra, tumor necrosis factor (TNF-) α, IL-15, IL-7, transforming growth factor (TGF-) ß1, and fractalkines (FKN) before and immediately after resistance exercise in healthy individuals. Random-effects meta-analysis was performed for each myokine. We identified a moderate positive effect of resistance exercise for IL-6 and IL-1ra. Regarding IL-15 and TNF-α, small to moderate effects were found. For IL-10, no significant effect was observed. Due to no data, meta-analyses for IL-7, TGF-ß1, and FKN could not be performed. No moderators (training status, type of exercise, risk of bias, age, sex, time of day, exercise volume, exercise intensity, exercise dose) of the results were detected for all tested myokines. Taken together, this systematic review and meta-analysis showed immediate positive effects of an acute resistance exercise session on IL-6, IL-1ra, TNF-α, and IL-15 levels.


Assuntos
Interleucina-15 , Treinamento Resistido , Humanos , Interleucina-15/metabolismo , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Miocinas , Proteína Antagonista do Receptor de Interleucina 1 , Fator de Necrose Tumoral alfa/metabolismo , Músculo Esquelético/metabolismo , Interleucina-7/metabolismo , Exercício Físico/fisiologia
2.
Exerc Immunol Rev ; 28: 36-52, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35452397

RESUMO

BACKGROUND: The nervous system integrates the immune system in the systemic effort to maintain or restore the organism's homeostasis. Acute bouts of exercise may alter the activity of specific pathways associated with neuroendocrine regulation of the immune system. OBJECTIVE: To examine the acute effects of heavy resistance exercise on biomarkers of neuroendocrine-immune regulation in healthy adults. METHODS: A systematic literature search was conducted using PubMed, Cochrane Controlled Trials Register, Web of Science and SportDiscus with no date restrictions up to March 2021. Clinical trials in English or German were included if they measured the blood plasma or serum concentrations of specific biomarkers of neuroendocrine-immune regulation (adrenaline, noradrenaline, acetylcholine, vasoactive intestinal peptide (VIP), cortisol, growth hormone, calcitonin gene-related peptide (CGRP), substance p, serotonin, brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF) or glia-derived neurotrophic factor (GDNF)) in a resting state prior to and no later than 60 minutes after an acute bout of heavy resistance exercise in healthy adults. RESULTS: 7801 records were identified through literature search, of which 36 studies, with a total of 58 intervention groups, met the inclusion criteria. Evidence was found that an acute bout of heavy resistance exercise increased the levels of adrenaline (median: 185%), noradrenaline (median: 113%) and GH (median: 265%) immediately after the exercise. Mixed results were found for cortisol (median: 0%), suggesting that its response might be more sensitive to the configuration of the exercise scheme. The limited evidence regarding the effects on BDNF and ACTH allows no firm conclusions to be drawn about their response to heavy resistance exercise. The vast majority of the included studies reported a return of the biomarker concentrations to their baseline value within one hour after the termination of the exercise bout. No studies were identified that investigated the response of acetylcholine, VIP, CGRP, substance p, serotonin, NGF or GDNF to heavy resistance exercise. CONCLUSIONS: A bout of heavy resistance exercise alters the circulating concentrations of selected biomarkers of neuroendocrine-immune regulation. Both subject characteristics, such as sex as well as exercise parameters, such as rest intervals appear to have the potential to influence these effects.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Treinamento Resistido , Acetilcolina , Adulto , Biomarcadores , Peptídeo Relacionado com Gene de Calcitonina , Epinefrina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Humanos , Hidrocortisona , Fator de Crescimento Neural , Norepinefrina , Serotonina , Substância P
3.
Front Sports Act Living ; 6: 1264814, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362064

RESUMO

Background: In times of physical stress, the body orchestrates a multisystemic regulatory response. The hormones epinephrine and norepinephrine play a role in the immediate regulation chain, while cortisol is involved in delayed regulation. The release of those stress hormones in response to exercise has previously been reported to elicit diverse immune reactions. Objective: The aim of this systematic review was to examine and present the acute effects of immediate pre- and mid-exercise carbohydrate ingestion on cortisol, epinephrine and norepinephrine levels in experienced endurance athletes. Methods: A systematic literature search was conducted using PubMed, Cochrane Library and Web of Science in accordance with PRISMA guidelines up to February 2023. Randomized controlled trials in English or German language were included if baseline and at least two follow-up measures of blood plasma or serum of chosen stress hormones (cortisol, epinephrine, norepinephrine) were collected in response to prolonged continuous endurance activity. Eligibility furthermore required an acute carbohydrate ingestion of at least 30 g of carbohydrates per hour no more than 30 min before start of the exercise, as well as a placebo-controlled study design. Results: Eleven studies of moderate to high quality were included in this review. Carbohydrate ingestion of at least 30 g per hour was able to attenuate rises in cortisol concentration in majority of the included studies. Epinephrine levels were considerably lower with ingestion of carbohydrates compared to placebo in all studies. Norepinephrine concentrations were largely unaffected by acute carbohydrate feeding. Conclusion: Pre- and mid-exercise ingestion of carbohydrates seems an effective dietary strategy to attenuate rises in cortisol and epinephrine levels and, thus, an effective countermeasure for endurance exercise-induced increases in stress hormone levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA