Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Faraday Discuss ; 187: 473-84, 2016 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-27034996

RESUMO

The molecular specificity and sensitivity of surface enhanced Raman scattering (SERS) makes it an attractive method for biomedical diagnostics. Here we present results demonstrating the utility and complications for SERS characterization in urine. The chemical fingerprint characteristics of Raman spectra suggest its use as a label free diagnostic; however, the complex composition of biological fluids presents a tremendous challenge. In particular, the limited number of surface sites and competing absorption tend to mask the presence of analytes in solution, particularly when the solution contains multiple analytes. To address these problems and characterize biological fluids we have demonstrated a sheath-flow interface for SERS detection. This sheath-flow SERS interface uses hydrodynamic focusing to confine analyte molecules eluting out of a column onto a planar SERS substrate where the molecules are detected by their intrinsic SERS signal. In this report we compare the direct detection of benzoylecgonine in urine using DSERS with chemical profiling by capillary zone electrophoresis and sheath-flow SERS detection. The SERS spectrum from the observed migration peaks can identify benzoylecgonine and other distinct spectra are also observed, suggesting improved chemical diagnostics in urine. With over 2000 reported compounds in urine, identification of each of the detected species is an enormous task. Nonetheless, these samples provide a benchmark to establish the potential clinical utility of sheath-flow SERS detection.


Assuntos
Análise Espectral Raman/métodos , Urinálise/métodos , Cocaína/análogos & derivados , Cocaína/urina , Eletroforese Capilar , Humanos , Hidrodinâmica
2.
Sci Rep ; 12(1): 11909, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831548

RESUMO

Viperin is a radical S-adenosylmethionine enzyme that catalyzes the formation of the antiviral ribonucleotide, 3'-deoxy-3',4'-didehydroCTP. The enzyme is conserved across all kingdoms of life, and in higher animals viperin is localized to the ER-membrane and lipid droplets through an N-terminal extension that forms an amphipathic helix. Evidence suggests that the N-terminal extension plays an important role in viperin's interactions with other membrane proteins. These interactions serve to modulate the activity of various other enzymes that are important for viral replication and constitute another facet of viperin's antiviral properties, distinct from its catalytic activity. However, the full-length form of the enzyme, which has proved refractory to expression in E. coli, has not been previously purified. Here we report the purification of the full-length form of viperin from HEK293T cells transfected with viperin. The purification method utilizes nanodiscs to maintain the protein in its membrane-bound state. Unexpectedly, the enzyme exhibits significantly lower catalytic activity once purified, suggesting that interactions with other ER-membrane components may be important to maintain viperin's activity.


Assuntos
Antivirais , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Animais , Escherichia coli/metabolismo , Células HEK293 , Humanos , Proteínas/metabolismo , S-Adenosilmetionina
3.
Lab Chip ; 17(17): 2951-2959, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28767110

RESUMO

The characterization of integral membrane proteins presents numerous analytical challenges on account of their poor activity under non-native conditions, limited solubility in aqueous solutions, and low expression in most cell culture systems. Nanodiscs are synthetic model membrane constructs that offer many advantages for studying membrane protein function by offering a native-like phospholipid bilayer environment. The successful incorporation of membrane proteins within Nanodiscs requires experimental optimization of conditions. Standard protocols for Nanodisc formation can require large amounts of time and input material, limiting the facile screening of formation conditions. Capitalizing on the miniaturization and efficient mass transport inherent to microfluidics, we have developed a microfluidic platform for efficient Nanodisc assembly and purification, and demonstrated the ability to incorporate functional membrane proteins into the resulting Nanodiscs. In addition to working with reduced sample volumes, this platform simplifies membrane protein incorporation from a multi-stage protocol requiring several hours or days into a single platform that outputs purified Nanodiscs in less than one hour. To demonstrate the utility of this platform, we incorporated Cytochrome P450 into Nanodiscs of variable size and lipid composition, and present spectroscopic evidence for the functional active site of the membrane protein. This platform is a promising new tool for membrane protein biology and biochemistry that enables tremendous versatility for optimizing the incorporation of membrane proteins using microfluidic gradients to screen across diverse formation conditions.


Assuntos
Proteínas de Membrana/química , Membranas Artificiais , Técnicas Analíticas Microfluídicas/métodos , Modelos Biológicos , Nanoestruturas/química , Desenho de Equipamento , Técnicas Analíticas Microfluídicas/instrumentação , Fosfolipídeos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA