Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(32): 9950-5, 2015 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-26216947

RESUMO

Global ocean acidification is caused primarily by the ocean's uptake of CO2 as a consequence of increasing atmospheric CO2 levels. We present observations of the oceanic decrease in pH at the basin scale (50 °S-36 °N) for the Atlantic Ocean over two decades (1993-2013). Changes in pH associated with the uptake of anthropogenic CO2 (ΔpHCant) and with variations caused by biological activity and ocean circulation (ΔpHNat) are evaluated for different water masses. Output from an Institut Pierre Simon Laplace climate model is used to place the results into a longer-term perspective and to elucidate the mechanisms responsible for pH change. The largest decreases in pH (∆pH) were observed in central, mode, and intermediate waters, with a maximum ΔpH value in South Atlantic Central Waters of -0.042 ± 0.003. The ΔpH trended toward zero in deep and bottom waters. Observations and model results show that pH changes generally are dominated by the anthropogenic component, which accounts for rates between -0.0015 and -0.0020/y in the central waters. The anthropogenic and natural components are of the same order of magnitude and reinforce one another in mode and intermediate waters over the time period. Large negative ΔpHNat values observed in mode and intermediate waters are driven primarily by changes in CO2 content and are consistent with (i) a poleward shift of the formation region during the positive phase of the Southern Annular Mode in the South Atlantic and (ii) an increase in the rate of the water mass formation in the North Atlantic.


Assuntos
Ácidos/química , Água/química , Oceano Atlântico , Atividades Humanas , Humanos , Concentração de Íons de Hidrogênio , Água do Mar/química , Temperatura
2.
Sci Rep ; 5: 16770, 2015 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-26608196

RESUMO

A significant fraction of anthropogenic carbon dioxide (CO2) released to the atmosphere is absorbed by the oceans, leading to a range of chemical changes and causing ocean acidification (OA). Assessing the impact of OA on marine ecosystems requires the accurate detection of the rate of seawater pH change. This work reports the results of nearly 3 years of continuous pH measurements in the Mediterranean Sea at the Strait of Gibraltar GIFT time series station. We document a remarkable decreasing annual trend of -0.0044 ± 0.00006 in the Mediterranean pH, which can be interpreted as an indicator of acidification in the basin based on high frequency records. Modeling pH data of the Mediterranean outflow allowed to discriminate between the pH values of its two main constituent water masses, the Levantine Intermediate Water (LIW) and the Western Mediterranean Deep Water (WMDW). Both water masses also exhibited a decline in pH with time, particularly the WMDW, which can be related to their different biogeochemical nature and processes occurring during transit time from formation sites to the Strait of Gibraltar.

3.
Science ; 326(5958): 1391-3, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-19965756

RESUMO

The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.

4.
Science ; 305(5682): 367-71, 2004 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-15256665

RESUMO

Using inorganic carbon measurements from an international survey effort in the 1990s and a tracer-based separation technique, we estimate a global oceanic anthropogenic carbon dioxide (CO2) sink for the period from 1800 to 1994 of 118 +/- 19 petagrams of carbon. The oceanic sink accounts for approximately 48% of the total fossil-fuel and cement-manufacturing emissions, implying that the terrestrial biosphere was a net source of CO2 to the atmosphere of about 39 +/- 28 petagrams of carbon for this period. The current fraction of total anthropogenic CO2 emissions stored in the ocean appears to be about one-third of the long-term potential.


Assuntos
Dióxido de Carbono/análise , Indústrias , Água do Mar/química , Animais , Atmosfera , Calcificação Fisiológica , Carbonato de Cálcio/análise , Carbono/análise , Carbono/metabolismo , Combustíveis Fósseis , Concentração de Íons de Hidrogênio , Oceanos e Mares , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA