Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31978343

RESUMO

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Assuntos
Técnicas de Cultura de Células/métodos , Organoides/crescimento & desenvolvimento , Venenos de Serpentes/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Cobras Corais/metabolismo , Perfilação da Expressão Gênica/métodos , Organoides/metabolismo , Glândulas Salivares/metabolismo , Venenos de Serpentes/genética , Serpentes/genética , Serpentes/crescimento & desenvolvimento , Células-Tronco/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
2.
Cell ; 176(5): 1158-1173.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712869

RESUMO

Homeostatic regulation of the intestinal enteroendocrine lineage hierarchy is a poorly understood process. We resolved transcriptional changes during enteroendocrine differentiation in real time at single-cell level using a novel knockin allele of Neurog3, the master regulator gene briefly expressed at the onset of enteroendocrine specification. A bi-fluorescent reporter, Neurog3Chrono, measures time from the onset of enteroendocrine differentiation and enables precise positioning of single-cell transcriptomes along an absolute time axis. This approach yielded a definitive description of the enteroendocrine hierarchy and its sub-lineages, uncovered differential kinetics between sub-lineages, and revealed time-dependent hormonal plasticity in enterochromaffin and L cells. The time-resolved map of transcriptional changes predicted multiple novel molecular regulators. Nine of these were validated by conditional knockout in mice or CRISPR modification in intestinal organoids. Six novel candidate regulators (Sox4, Rfx6, Tox3, Myt1, Runx1t1, and Zcchc12) yielded specific enteroendocrine phenotypes. Our time-resolved single-cell transcriptional map presents a rich resource to unravel enteroendocrine differentiation.


Assuntos
Linhagem da Célula/genética , Células Enteroendócrinas/metabolismo , Perfilação da Expressão Gênica/métodos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular/genética , Linhagem da Célula/fisiologia , Células Enteroendócrinas/fisiologia , Corantes Fluorescentes , Proteínas de Homeodomínio/genética , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Imagem Óptica/métodos , Organoides , Fenótipo , Análise de Célula Única/métodos , Células-Tronco , Fatores de Transcrição/genética , Transcriptoma/genética
3.
Cell ; 175(6): 1591-1606.e19, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30500538

RESUMO

The mammalian liver possesses a remarkable regenerative ability. Two modes of damage response have been described: (1) The "oval cell" response emanates from the biliary tree when all hepatocytes are affected by chronic liver disease. (2) A massive, proliferative response of mature hepatocytes occurs upon acute liver damage such as partial hepatectomy (PHx). While the oval cell response has been captured in vitro by growing organoids from cholangiocytes, the hepatocyte proliferative response has not been recapitulated in culture. Here, we describe the establishment of a long-term 3D organoid culture system for mouse and human primary hepatocytes. Organoids can be established from single hepatocytes and grown for multiple months, while retaining key morphological, functional and gene expression features. Transcriptional profiles of the organoids resemble those of proliferating hepatocytes after PHx. Human hepatocyte organoids proliferate extensively after engraftment into mice and thus recapitulate the proliferative damage-response of hepatocytes.


Assuntos
Proliferação de Células , Hepatócitos/metabolismo , Organoides/metabolismo , Animais , Técnicas de Cultura de Células , Células Cultivadas , Hepatócitos/citologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Organoides/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Fatores de Tempo
4.
Nature ; 621(7977): 188-195, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37648854

RESUMO

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
5.
EMBO J ; 41(10): e109675, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35403737

RESUMO

Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.


Assuntos
Imageamento Tridimensional , Neoplasias , Humanos , Imageamento Tridimensional/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/patologia
6.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30643021

RESUMO

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Fibrose Cística/patologia , Células Epiteliais/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Sistema Respiratório/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Sistema Respiratório/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33848015

RESUMO

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Assuntos
Néfrons , Células-Tronco , Diferenciação Celular , Mesoderma , Organogênese/genética
8.
Nat Methods ; 15(1): 24-26, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29298292

RESUMO

Organogenesis, tissue homeostasis and organ function involve complex spatial cellular organization and tissue dynamics. The underlying mechanisms of these processes, and how they are disrupted in disease, are challenging to address in vivo and ethically impossible to study in human. Organoids, three-dimensional (3D) stem cell cultures that self-organize into ex vivo 'mini-organs', now open a new window onto cellular processes within tissue. Light microscopy is a powerful approach to probe the cellular complexity that can be modeled with organoids. This combination of tools is already leading to exciting synergies in stem cell and cancer research.


Assuntos
Modelos Biológicos , Imagem Óptica/métodos , Organogênese , Organoides/citologia , Células-Tronco Pluripotentes/citologia , Animais , Humanos
9.
Development ; 144(6): 1065-1071, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-27993977

RESUMO

Advances in stem cell research have enabled the generation of 'mini organs' or organoids that recapitulate phenotypic traits of the original biological specimen. Although organoids have been demonstrated for multiple organ systems, there are more limited options for studying mouse mammary gland formation in vitro Here, we have built upon previously described culture assays to define culture conditions that enable the efficient generation of clonal organoid structures from single sorted basal mammary epithelial cells (MECs). Analysis of Confetti-reporter mice revealed the formation of uni-colored structures and thus the clonal nature of these organoids. High-resolution 3D imaging demonstrated that basal cell-derived complex organoids comprised an inner compartment of polarized luminal cells with milk-producing capacity and an outer network of elongated myoepithelial cells. Conversely, structures generated from luminal MECs rarely contained basal/myoepithelial cells. Moreover, flow cytometry and 3D microscopy of organoids generated from lineage-specific reporter mice established the bipotent capacity of basal cells and the restricted potential of luminal cells. In summary, we describe optimized in vitro conditions for the efficient generation of mouse mammary organoids that recapitulate features of mammary tissue architecture and function, and can be applied to understand tissue dynamics and cell-fate decisions.


Assuntos
Glândulas Mamárias Animais/crescimento & desenvolvimento , Organoides/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Linhagem da Célula , Células Clonais , Células Epiteliais/citologia , Feminino , Citometria de Fluxo , Genes Reporter , Imageamento Tridimensional , Glândulas Mamárias Animais/citologia , Camundongos , Microscopia Confocal
10.
Adv Funct Mater ; 30(44): 1910250, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34566552

RESUMO

To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.

11.
Nature ; 506(7488): 322-7, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24463516

RESUMO

The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates that bipotent MaSCs have a key role in coordinating ductal epithelial expansion and maintenance in the adult gland, whereas the second model proposes that only unipotent MaSCs identified by lineage tracing contribute to these processes. Through clonal cell-fate mapping studies using a stochastic multicolour cre reporter combined with a new three-dimensional imaging strategy, we provide evidence for the existence of bipotent MaSCs as well as distinct long-lived progenitor cells. The cellular dynamics at different developmental stages support a model in which both stem and progenitor cells drive morphogenesis during puberty, whereas bipotent MaSCs coordinate ductal homeostasis and remodelling of the mouse adult gland.


Assuntos
Glândulas Mamárias Animais/citologia , Glândulas Mamárias Humanas/citologia , Células-Tronco Multipotentes/citologia , Animais , Linhagem da Célula , Rastreamento de Células , Células Clonais/citologia , Células Clonais/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Queratina-14/metabolismo , Camundongos , Morfogênese , Células-Tronco Multipotentes/metabolismo , Puberdade , Receptores Acoplados a Proteínas G/metabolismo , Maturidade Sexual , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Nature ; 473(7348): 532-5, 2011 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-21572437

RESUMO

How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH signalling to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. Our results indicate that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.


Assuntos
Desenvolvimento Muscular , Músculo Esquelético/embriologia , Músculo Esquelético/metabolismo , Crista Neural/metabolismo , Receptores Notch/metabolismo , Animais , Linhagem da Célula , Embrião de Galinha , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Músculo Esquelético/citologia , Crista Neural/citologia , Transdução de Sinais , Somitos/citologia , Somitos/embriologia , Somitos/metabolismo , Fatores de Tempo
13.
Breast Cancer Res ; 18(1): 116, 2016 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-27887631

RESUMO

Lineage tracing is increasingly being utilised to probe different cell types that exist within the mammary gland. Whilst this technique is powerful for tracking cells in vivo and dissecting the roles of different cellular subsets in development, homeostasis and oncogenesis, there are important caveats associated with lineage tracing strategies. Here we highlight key parameters of particular relevance for the mammary gland. These include tissue preparation for whole-mount imaging, whereby the inclusion of enzymatic digestion can drastically alter tissue architecture and cell morphology, and therefore should be avoided. Other factors include the scoring of clones in three dimensions versus two dimensions, the timing of induction, and the marked variability in labelling efficiency that is evident not only between different mouse models harbouring a similar gene promoter but also within a given strain and even within a single mammary gland. Thus, it becomes crucial to visualise extensive areas of ductal tissue and to consider the intricacies of the methodology for lineage tracing studies on normal mammary development and on potential 'cells of origin' of cancer.


Assuntos
Linhagem da Célula , Glândulas Mamárias Animais/diagnóstico por imagem , Glândulas Mamárias Humanas/diagnóstico por imagem , Imagem Molecular , Animais , Biomarcadores , Linhagem da Célula/genética , Rastreamento de Células/métodos , Evolução Clonal , Feminino , Humanos , Imageamento Tridimensional/métodos , Imagem Molecular/métodos
14.
EMBO Mol Med ; 16(10): 2299-2321, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179741

RESUMO

The human mammary gland represents a highly organized and dynamic tissue, uniquely characterized by postnatal developmental cycles. During pregnancy and lactation, it undergoes extensive hormone-stimulated architectural remodeling, culminating in the formation of specialized structures for milk production to nourish offspring. Moreover, it carries significant health implications, due to the high prevalence of breast cancer. Therefore, gaining insight into the unique biology of the mammary gland can have implications for managing breast cancer and promoting the well-being of both women and infants. Tissue engineering techniques hold promise to narrow the translational gap between existing breast models and clinical outcomes. Here, we provide an overview of the current landscape of breast tissue engineering, outline key requirements, and the challenges to overcome for achieving more predictive human breast models. We propose methods to validate breast function and highlight preclinical applications for improved understanding and targeting of breast cancer. Beyond mammary gland physiology, representative human breast models can offer new insight into stem cell biology and developmental processes that could extend to other organs and clinical contexts.


Assuntos
Neoplasias da Mama , Engenharia Tecidual , Humanos , Engenharia Tecidual/métodos , Feminino , Neoplasias da Mama/patologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Mama/patologia , Animais , Gravidez
15.
Hemasphere ; 8(9): e149, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39233904

RESUMO

Pediatric classic Hodgkin lymphoma (cHL) patients have a high survival rate but suffer from severe long-term side effects induced by chemo- and radiotherapy. cHL tumors are characterized by the low fraction (0.1%-10%) of malignant Hodgkin and Reed-Sternberg (HRS) cells in the tumor. The HRS cells depend on the surrounding immune cells for survival and growth. This dependence is leveraged by current treatments that target the PD-1/PD-L1 axis in cHL tumors. The development of more targeted therapies that are specific for the tumor and are therefore less toxic for healthy tissue compared with conventional chemotherapy could improve the quality of life of pediatric cHL survivors. Here, we applied single-cell RNA sequencing (scRNA-seq) on isolated HRS cells and the immune cells from the same cHL tumors. Besides TNFRSF8 (CD30), we identified other genes of cell surface proteins that are consistently overexpressed in HRS cells, such as NRXN3 and LRP8, which can potentially be used as alternative targets for antibody-drug conjugates or CAR T cells. Finally, we identified potential interactions by which HRS cells inhibit T cells, among which are the galectin-1/CD69 and HLA-II/LAG3 interactions. RNAscope was used to validate the enrichment of CD69 and LAG3 expression on T cells near HRS cells and indicated large variability of the interaction strength with the corresponding ligands between patients and between tumor tissue regions. In conclusion, this study identifies new potential therapeutic targets for cHL and highlights the importance of studying heterogeneity when identifying therapy targets, specifically those that target tumor-immune cell interactions.

16.
Nat Protoc ; 19(7): 2052-2084, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38504137

RESUMO

Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.


Assuntos
Imageamento Tridimensional , Neoplasias , Linfócitos T , Humanos , Linfócitos T/imunologia , Imageamento Tridimensional/métodos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Imunoterapia/métodos , Técnicas de Cocultura/métodos
17.
EMBO Mol Med ; 16(7): 1495-1514, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38831131

RESUMO

Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.


Assuntos
Imageamento Tridimensional , Organoides , Humanos , Imageamento Tridimensional/métodos , Cirurgia Assistida por Computador/métodos , Imagem Óptica/métodos , Animais , Neoplasias/cirurgia , Corantes Fluorescentes/química
18.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38571421

RESUMO

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Assuntos
Neoplasias , Humanos , Neoplasias/genética
19.
Genome Res ; 20(10): 1459-68, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20647237

RESUMO

Developmental biology aims to understand how the dynamics of embryonic shapes and organ functions are encoded in linear DNA molecules. Thanks to recent progress in genomics and imaging technologies, systemic approaches are now used in parallel with small-scale studies to establish links between genomic information and phenotypes, often described at the subcellular level. Current model organism databases, however, do not integrate heterogeneous data sets at different scales into a global view of the developmental program. Here, we present a novel, generic digital system, NISEED, and its implementation, ANISEED, to ascidians, which are invertebrate chordates suitable for developmental systems biology approaches. ANISEED hosts an unprecedented combination of anatomical and molecular data on ascidian development. This includes the first detailed anatomical ontologies for these embryos, and quantitative geometrical descriptions of developing cells obtained from reconstructed three-dimensional (3D) embryos up to the gastrula stages. Fully annotated gene model sets are linked to 30,000 high-resolution spatial gene expression patterns in wild-type and experimentally manipulated conditions and to 528 experimentally validated cis-regulatory regions imported from specialized databases or extracted from 160 literature articles. This highly structured data set can be explored via a Developmental Browser, a Genome Browser, and a 3D Virtual Embryo module. We show how integration of heterogeneous data in ANISEED can provide a system-level understanding of the developmental program through the automatic inference of gene regulatory interactions, the identification of inducing signals, and the discovery and explanation of novel asymmetric divisions.


Assuntos
Bases de Dados Factuais , Biologia do Desenvolvimento/métodos , Regulação da Expressão Gênica no Desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Internet , Urocordados , Animais , Cordados/embriologia , Cordados/genética , Cordados/crescimento & desenvolvimento , Biologia Computacional/métodos , Urocordados/embriologia , Urocordados/genética , Urocordados/crescimento & desenvolvimento
20.
Nat Rev Cancer ; 23(11): 731-745, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37704740

RESUMO

By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Medicina de Precisão/métodos , Imunoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA