Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 103(3): 2117-2127, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31928757

RESUMO

This study evaluated the organic residues of milk fouling using fluorescence and confocal laser scanning microscopy. The inorganic content was analyzed with energy-dispersive X-ray spectroscopy, complemented with inductively coupled plasma optical emission spectrometry. These techniques were applied to evaluate milk fouling cleanliness using an alkaline product and an enzymatic formulation based on protease and amylase. The results showed that the efficiency of enzymatic cleaning was 87.1% when it was evaluated at 55°C for 30 min, and with a medium of pH 8.5. No difference was found from the efficacy in eliminating dairy fouling observed for the chemical cleaning (86.9%). The fluorescence microscopy proved useful for determining the organic solid components in the outer layer of the dairy fouling. The fouling spatial disposition in 3 dimensions, obtained by confocal laser scanning microscopy, showed that it was formed of 51.3% sugars, 9.3% fats, and 39.4% proteins, with the enzymatic cleaning of these compounds being homogeneous, compared with chemical cleaning. The protein and lipid contents were in the surface layer, whereas sugars were located in the innermost part that contributes to the Maillard reaction during fouling formation. After enzymatic cleaning, the reduction in the concentration of Ca and P was 71.61 and 74.67%, respectively, compared with fouling intact. Thus, enzymatic cleaning, without the accumulation of Na from chemical cleaning, leaves 1.5 times less mineral than chemical cleaning. Knowing the content and structure of fouling in the industry helps to formulate better products to achieve proper levels of cleanliness. Additionally, studying the cleaning residues helps to avoid problems of cross-contamination between batches or subsequent microbial growths (biofilms) on surfaces with residues.


Assuntos
Contaminação de Alimentos , Leite/química , Animais , Indústria de Laticínios , Feminino , Membranas Artificiais , Microscopia Confocal , Espectrometria por Raios X
2.
Compr Rev Food Sci Food Saf ; 19(4): 1877-1907, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-33337076

RESUMO

The prevention of foodborne diseases is one of the main objectives of health authorities. To this effect, analytical techniques to detect and/or quantify the microbiological contamination of foods prior to their release onto the market are required. Management and control of foodborne pathogens have generally been based on conventional detection methodologies, which are not only time-consuming and labor-intensive but also involve high consumable materials costs. However, this management perspective has changed over time given that the food industry requires efficient analytical methods that obtain rapid results. This review covers the historical context of traditional methods and their passage in time through to the latest developments in rapid methods and their implementation in the food sector. Improvements and limitations in the detection of the most relevant pathogens are discussed from a perspective applicable to the current situation in the food industry. Considering efforts that are being done and recent developments, rapid and accurate methods already used in the food industry will be also affordable and portable and offer connectivity in near future, which improves decision-making and safety throughout the food chain.


Assuntos
Indústria Alimentícia/métodos , Microbiologia de Alimentos/métodos , Bactérias/isolamento & purificação , Contaminação de Alimentos/análise , Doenças Transmitidas por Alimentos/prevenção & controle
3.
Compr Rev Food Sci Food Saf ; 17(5): 1261-1276, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33350156

RESUMO

Microorganisms can colonize and subsequently form biofilms on surfaces, which protect them from adverse conditions and make them more resistant than their planktonic free-living counterparts. This is a major concern in the food industry because the presence of biofilms has significant implications for microbial food contamination and, therefore, for the transmission of foodborne diseases. Adequate hygienic conditions and various preventive and control strategies have consequently been developed to ensure the provision of safe, good-quality food with an acceptable shelf-life. This review focuses on the significance of biofilms in the food industry by describing the factors that favor their formation. The interconnected process among bacteria known as "quorum sensing," which plays a significant role in biofilm development, is also described. Furthermore, we discuss recent strategic methods to detect, quantify, and remove biofilms formed by pathogenic bacteria associated with food processing environments, focusing on the complexity of these microbial communities.

4.
Biomolecules ; 11(3)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810177

RESUMO

Listeria monocytogenes continues to be one of the most important public health challenges for the meat sector. Many attempts have been made to establish the most efficient cleaning and disinfection protocols, but there is still the need for the sector to develop plans with different lines of action. In this regard, an interesting strategy could be based on the control of this type of foodborne pathogen through the resident microbiota naturally established on the surfaces. A potential inhibitor, Bacillus safensis, was found in a previous study that screened the interaction between the resident microbiota and L. monocytogenes in an Iberian pig processing plant. The aim of the present study was to evaluate the effect of preformed biofilms of Bacillus safensis on the adhesion and implantation of 22 strains of L. monocytogenes. Mature preformed B. safensis biofilms can inhibit adhesion and the biofilm formation of multiple L. monocytogenes strains, eliminating the pathogen by a currently unidentified mechanism. Due to the non-enterotoxigenic properties of B. safensis, its presence on certain meat industry surfaces should be favored and it could represent a new way to fight against the persistence of L. monocytogenes in accordance with other bacterial inhibitors and hygiene operations.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Biofilmes/crescimento & desenvolvimento , Listeria monocytogenes/crescimento & desenvolvimento , Listeria monocytogenes/fisiologia , Aço Inoxidável , Aderência Bacteriana/fisiologia
5.
Microorganisms ; 9(1)2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33467747

RESUMO

Biofilms contain microbial cells which are protected by a self-produced matrix and they firmly attach themselves to many different food industry surfaces. Due to this protection, microorganisms within biofilms are much more difficult to eradicate and therefore to control than suspended cells. A bacterium that tends to produce these structures and persist in food processing plants is Listeria monocytogenes. To this effect, many attempts have been made to develop control strategies to be applied in the food industry, although there seems to be no clear direction on how to manage the risk the bacteria poses. There is no standardized protocol that is applied equally to all food sectors, so the strategies for the control of this pathogen depend on the type of surface, the nature of the product, the conditions of the food industry environment, and indeed the budget. The food industry performs different preventive and corrective measures on possible L. monocytogenes-contaminated surfaces. However, a critical evaluation of the sanitization methods applied must be performed to discern whether the treatment can be effective in the long-term. This review will focus on currently used strategies to eliminate biofilms and control their formation in processing facilities in different food sectors (i.e., dairy, meat, fish, chilled vegetables, and ready-to-eat products). The technologies employed for their control will be exemplified and discussed with the objective of understanding how L. monocytogenes can be improved through food safety management systems.

6.
Foods ; 9(4)2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32268566

RESUMO

Food contact surfaces are primary sources of bacterial contamination in food industry processes. With the objective of preventing bacterial adhesion and biofilm formation on surfaces, this study evaluated the antimicrobial activity of silver (Ag-NPs) and zinc oxide (ZnO-NPs) nanoparticle-containing polyester surfaces (concentration range from 400 ppm to 850 ppm) using two kinds of bacteria, Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli), and the prevention of bacterial biofilm formation using the pathogen Listeria monocytogenes. The results of antimicrobial efficacy (reductions ≥ 2 log CFU/cm2) showed that at a concentration of 850 ppm, ZnO-NPs were effective against only E. coli (2.07 log CFU/cm2). However, a concentration of 400 ppm of Ag-NPs was effective against E. coli (4.90 log CFU/cm2) and S. aureus (3.84 log CFU/cm2). Furthermore, a combined concentration of 850 ppm Ag-NPs and 400 ppm ZnO-NPs showed high antimicrobial efficacy against E. coli (5.80 log CFU/cm2) and S. aureus (4.11 log CFU/cm2). The results also showed a high correlation between concentration levels and the bacterial activity of Ag-ZnO-NPs (R2 = 0.97 for S. aureus, and R2 = 0.99 for E. coli). They also showed that unlike individual action, the joint action of Ag-NPs and ZnO-NPs has high antimicrobial efficacy for both types of microorganisms. Moreover, Ag-NPs prevent the biofilm formation of L. monocytogenes in humid conditions of growth at concentrations of 500 ppm. Additional studies under different conditions are needed to test the durability of nanoparticle containing polyester surfaces with antimicrobial properties to optimize their use.

7.
Microorganisms ; 7(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817368

RESUMO

Food spoilage is a serious problem in the food industry, since it leads to significant economic losses. One of its main causes is the cross-contamination of food products from industrial surfaces. Three spoilage bacterial species which are highly present in meat and the gastrointestinal tract of chickens were selected: Pseudomonas fragi, Leuconostoc gasicomitatum, and Lactobacillus reuteri. The dual aim was to determine their ability to form monospecies biofilms and to examine how they interact when they coexist together. To do so, mature monospecies biofilms were produced statically for seven days at a temperature of 30 °C. L. gasicomitatum was also used to investigate the behavior of P. fragi and L. reuteri in the formation of multispecies biofilms. The structure and composition of the monospecies biofilms were evaluated by direct epifluorescence microscopy, and the multispecies biofilms were evaluated by plate counting. Both L. gasicomitatum and L. reuteri were able to form biofilms, with counts of approximately 7 Log CFU/cm2 and a defined structure. However, P. fragi obtained counts to the order of 4 Log CFU/cm2, which is significantly different from the previous species (P < 0.05), and it had no network of cell conglomerates. The content of the L. gasicomitatum and L. reuteri biofilm matrices were 70-80% protein, unlike P. fragi, which presented a higher polysaccharide content (P < 0.05). In the multispecies biofilms, the presence of P. fragi did not affect the growth of L. gasicomitatum, which remained at between 5.76 to 6.1 Log CFU/cm2. However, L. reuteri was able to displace L. gasicomitatum growth after 24 h of coexisting in a mixed biofilm, presenting differences in counts of approximately 2 Log CFU/cm2. The study of the biofilms constructed by food industry resident microbiota can help to understand the ecological relations that exist between species, characterize them, and propose strategies to eliminate them. The name of genes and species should be written in italic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA