Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell ; 187(12): 3006-3023.e26, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38744280

RESUMO

Centromeres are scaffolds for the assembly of kinetochores that ensure chromosome segregation during cell division. How vertebrate centromeres obtain a three-dimensional structure to accomplish their primary function is unclear. Using super-resolution imaging, capture-C, and polymer modeling, we show that vertebrate centromeres are partitioned by condensins into two subdomains during mitosis. The bipartite structure is found in human, mouse, and chicken cells and is therefore a fundamental feature of vertebrate centromeres. Super-resolution imaging and electron tomography reveal that bipartite centromeres assemble bipartite kinetochores, with each subdomain binding a distinct microtubule bundle. Cohesin links the centromere subdomains, limiting their separation in response to spindle forces and avoiding merotelic kinetochore-spindle attachments. Lagging chromosomes during cancer cell divisions frequently have merotelic attachments in which the centromere subdomains are separated and bioriented. Our work reveals a fundamental aspect of vertebrate centromere biology with implications for understanding the mechanisms that guarantee faithful chromosome segregation.


Assuntos
Centrômero , Coesinas , Cinetocoros , Mitose , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Galinhas , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/química , Segregação de Cromossomos , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
2.
3.
Nature ; 607(7919): 604-609, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35831506

RESUMO

Chromosome segregation errors during cell divisions generate aneuploidies and micronuclei, which can undergo extensive chromosomal rearrangements such as chromothripsis1-5. Selective pressures then shape distinct aneuploidy and rearrangement patterns-for example, in cancer6,7-but it is unknown whether initial biases in segregation errors and micronucleation exist for particular chromosomes. Using single-cell DNA sequencing8 after an error-prone mitosis in untransformed, diploid cell lines and organoids, we show that chromosomes have different segregation error frequencies that result in non-random aneuploidy landscapes. Isolation and sequencing of single micronuclei from these cells showed that mis-segregating chromosomes frequently also preferentially become entrapped in micronuclei. A similar bias was found in naturally occurring micronuclei of two cancer cell lines. We find that segregation error frequencies of individual chromosomes correlate with their location in the interphase nucleus, and show that this is highest for peripheral chromosomes behind spindle poles. Randomization of chromosome positions, Cas9-mediated live tracking and forced repositioning of individual chromosomes showed that a greater distance from the nuclear centre directly increases the propensity to mis-segregate. Accordingly, chromothripsis in cancer genomes9 and aneuploidies in early development10 occur more frequently for larger chromosomes, which are preferentially located near the nuclear periphery. Our findings reveal a direct link between nuclear chromosome positions, segregation error frequencies and micronucleus content, with implications for our understanding of tumour genome evolution and the origins of specific aneuploidies during development.


Assuntos
Aneuploidia , Posicionamento Cromossômico , Segregação de Cromossomos , Cromossomos , Proteína 9 Associada à CRISPR , Linhagem Celular , Linhagem Celular Tumoral , Segregação de Cromossomos/genética , Cromossomos/genética , Cromossomos/metabolismo , Cromotripsia , Crescimento e Desenvolvimento/genética , Humanos , Interfase , Micronúcleos com Defeito Cromossômico , Mitose , Neoplasias/genética , Neoplasias/patologia , Organoides/citologia , Organoides/metabolismo , Análise de Sequência de DNA , Análise de Célula Única
4.
Nucleic Acids Res ; 51(19): 10568-10589, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37739411

RESUMO

Stringent control of centrosome duplication and separation is important for preventing chromosome instability. Structural and numerical alterations in centrosomes are hallmarks of neoplastic cells and contribute to tumorigenesis. We show that a Centrosome Amplification 20 (CA20) gene signature is associated with high expression of the Tripartite Motif (TRIM) family member E3 ubiquitin ligase, TRIM69. TRIM69-ablation in cancer cells leads to centrosome scattering and chromosome segregation defects. We identify Serine/threonine-protein kinase 3 (MST2) as a new direct binding partner of TRIM69. TRIM69 redistributes MST2 to the perinuclear cytoskeleton, promotes its association with Polo-like kinase 1 (PLK1) and stimulates MST2 phosphorylation at S15 (a known PLK1 phosphorylation site that is critical for centrosome disjunction). TRIM69 also promotes microtubule bundling and centrosome segregation that requires PRC1 and DYNEIN. Taken together, we identify TRIM69 as a new proximal regulator of distinct signaling pathways that regulate centrosome dynamics and promote bipolar mitosis.


Assuntos
Centrossomo , Segregação de Cromossomos , Transdução de Sinais , Proteínas de Ciclo Celular/metabolismo , Centrossomo/metabolismo , Mitose/genética , Fosforilação , Fuso Acromático/metabolismo
5.
EMBO Rep ; 18(2): 217-230, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28028032

RESUMO

In the mitotic spindle, kinetochore microtubules form k-fibers, whereas overlap or interpolar microtubules form antiparallel arrays containing the cross-linker protein regulator of cytokinesis 1 (PRC1). We have recently shown that an overlap bundle, termed bridging fiber, links outermost sister k-fibers. However, the relationship between overlap bundles and k-fibers throughout the spindle remained unknown. Here, we show that in a metaphase spindle more than 90% of overlap bundles act as a bridge between sister k-fibers. We found that the number of PRC1-GFP-labeled bundles per spindle is nearly the same as the number of kinetochore pairs. Live-cell imaging revealed that kinetochore movement in the equatorial plane of the spindle is highly correlated with the movement of the coupled PRC1-GFP-labeled fiber, whereas the correlation with other fibers decreases with increasing distance. Analysis of endogenous PRC1 localization confirmed the results obtained with PRC1-GFP PRC1 knockdown reduced the bridging fiber thickness and interkinetochore distance throughout the spindle, suggesting a function of PRC1 in bridging microtubule organization and force balance in the metaphase spindle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinetocoros/metabolismo , Metáfase , Microtúbulos/metabolismo , Fuso Acromático , Proteínas de Ciclo Celular/genética , Cromossomos Humanos , Expressão Gênica , Inativação Gênica , Genes Reporter , Células HeLa , Humanos , Imagem Molecular/métodos , Transporte Proteico , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
6.
Stem Cell Res Ther ; 14(1): 368, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38093301

RESUMO

BACKGROUND: Limbal stem cells (LSCs) are crucial for the regeneration of the corneal epithelium in patients with limbal stem cell deficiency (LSCD). Thus, LSCs during cultivation in vitro should be in highly homogeneous amounts, while potency and expression of stemness without tumorigenesis would be desirable. Therefore, further characterization and safety evaluation of engineered limbal grafts is required to provide safe and high-quality therapeutic applications. METHODS: After in vitro expansion, LSCs undergo laboratory characterization in a single-cell suspension, cell culture, and in limbal grafts before transplantation. Using a clinically applicable protocol, the data collected on LSCs at passage 1 were summarized, including: identity (cell size, morphology); potency (yield, viability, population doubling time, colony-forming efficiency); expression of putative stem cell markers through flow cytometry, immunofluorescence, and immunohistochemistry. Then, mitotic chromosome stability and normal mitotic outcomes were explored by using live-cell imaging. Finally, impurities, bacterial endotoxins and sterility were determined. RESULTS: Expression of the stemness marker p63 in single-cell suspension and in cell culture showed high values by different methods. Limbal grafts showed p63-positive cells (78.7 ± 9.4%), Ki67 proliferation (41.7 ± 15.9%), while CK3 was negative. Impurity with 3T3 feeder cells and endotoxins was minimized. We presented mitotic spindles with a length of 11.40 ± 0.54 m and a spindle width of 8.05 ± 0.55 m as new characterization in LSC culture. Additionally, live-cell imaging of LSCs (n = 873) was performed, and only a small fraction < 2.5% of aberrant interphase cells was observed; 2.12 ± 2.10% of mitotic spindles exhibited a multipolar phenotype during metaphase, and 3.84 ± 3.77% of anaphase cells had a DNA signal present within the spindle midzone, indicating a chromosome bridge or lagging chromosome phenotype. CONCLUSION: This manuscript provides, for the first time, detailed characterization of the parameters of fidelity of the mitotic process and mitotic spindle morphologies of LSCs used in a direct clinical application. Our data show that p63-positive CK3-negative LSCs grown in vitro for clinical purposes undergo mitotic processes with extremely high fidelity, suggesting high karyotype stability. This finding confirms LSCs as a high-quality and safe therapy for eye regeneration in humans.


Assuntos
Epitélio Corneano , Limbo da Córnea , Humanos , Células-Tronco , Células-Tronco do Limbo , Fuso Acromático , Endotoxinas/metabolismo
7.
Cell Rep ; 40(5): 111169, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35926461

RESUMO

Chromosome alignment at the spindle equator promotes proper chromosome segregation and depends on pulling forces exerted at kinetochore fiber tips together with polar ejection forces. However, kinetochore fibers are also subjected to forces driving their poleward flux. Here we introduce a flux-driven centering model that relies on flux generated by forces within the overlaps of bridging and kinetochore fibers. This centering mechanism works so that the longer kinetochore fiber fluxes faster than the shorter one, moving the kinetochores toward the center. We develop speckle microscopy in human spindles and confirm the key prediction that kinetochore fiber flux is length dependent. Kinetochores are better centered when overlaps are shorter and the kinetochore fiber flux slower than the bridging fiber flux. We identify Kif18A and Kif4A as overlap and flux regulators and NuMA as a fiber coupler. Thus, length-dependent sliding forces exerted by the bridging fiber onto kinetochore fibers support chromosome alignment.


Assuntos
Anáfase , Cinetocoros , Proteínas de Ciclo Celular , Segregação de Cromossomos , Cromossomos , Humanos , Cinesinas , Metáfase , Microtúbulos , Fuso Acromático
8.
Elife ; 102021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33480356

RESUMO

During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here, we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promote chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers.


Before cells divide to create copies of themselves, they need to duplicate their genetic material. To help split their DNA evenly, they build a machine called the mitotic spindle. The mitotic spindle is made of fine, tube-like structures called microtubules, which catch the chromosomes containing the genetic information and line them up at the center of the spindle. Microtubules push and pull the chromosomes by elongating or shortening their tips. But it remains unclear how the microtubules know when the chromosomes have reached center point. One way to find out is to remove proteins that accumulate in the middle of the spindle during division, such as the protein PRC1, which helps to assemble a subset of microtubules called bridging fibers, and the proteins Kif4A and Kif18A, which work like molecular rulers, shortening long microtubules. Usually, scientists would delete one of these proteins to see what impact this has. However, these experiments take days, giving the cell enough time to adapt and thus making it difficult to study the role of each of the proteins. Here, Jagric, Risteski, Martincic et al. used light to manipulate proteins at the exact moment of chromosome alignment and to move PRC1 from the spindle to the cell membrane. Consequently, Kif4A and Kif18A were removed from the spindle center. This caused the bridging fibers, which overlap with the microtubules that connect to the chromosomes, to become thinner. Jagric et al. discovered that without the molecular ruler proteins, the bridging fibers were also too long. This increased the overlap between the microtubules in the center of the spindle, causing the chromosomes to migrate away from the center. This suggests that the alignment of chromosomes in the middle of the spindle depends on the bridging microtubules, which need to be of a certain length to effectively move and keep the chromosomes at the center. Thus, forces that move the chromosomes are generated both at the tips of the microtubules and along the wall of microtubules. These results might inspire other researchers to reassess the role of bridging fibers in cell division. The optogenetic technique described here could also help to determine the parts other proteins have to play. Ultimately, this might allow researchers to identify all the proteins needed to align the chromosomes.


Assuntos
Proteínas de Ciclo Celular/genética , Cromossomos , Optogenética , Fuso Acromático , Proteínas de Ciclo Celular/metabolismo
9.
Dev Cell ; 56(9): 1253-1267.e10, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33910056

RESUMO

Proper chromosome segregation into two future daughter cells requires the mitotic spindle to elongate in anaphase. However, although some candidate proteins are implicated in this process, the molecular mechanism that drives spindle elongation in human cells is unknown. Using combined depletion and inactivation assays together with CRISPR technology to explore redundancy between multiple targets, we discovered that the force-generating mechanism of spindle elongation consists of EG5/kinesin-5 together with the PRC1-dependent motor KIF4A/kinesin-4, with contribution from kinesin-6 and kinesin-8. Disruption of EG5 and KIF4A leads to total failure of chromosome segregation due to blocked spindle elongation, despite poleward chromosome motion. Tubulin photoactivation, stimulated emission depletion (STED), and expansion microscopy show that perturbation of both proteins impairs midzone microtubule sliding without affecting microtubule stability. Thus, two mechanistically distinct sliding modules, one based on a self-sustained and the other on a crosslinker-assisted motor, power the mechanism that drives spindle elongation in human cells.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Anáfase , Segregação de Cromossomos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo
10.
Curr Biol ; 31(10): R574-R585, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033791

RESUMO

During metaphase, chromosomes are aligned in a lineup at the equatorial plane of the spindle to ensure synchronous poleward movement of chromatids in anaphase and proper nuclear reformation at the end of mitosis. Chromosome alignment relies on microtubules, several types of motor protein and numerous other microtubule-associated and regulatory proteins. Because of the multitude of players involved, the mechanisms of chromosome alignment are still under debate. Here, we discuss the current models of alignment based on poleward pulling forces exerted onto sister kinetochores by kinetochore microtubules, which show length-dependent dynamics and undergo poleward flux, and polar ejection forces that push the chromosome arms away from the pole. We link these models with the recent ideas based on mechanical coupling between bridging and kinetochore microtubules, where sliding of bridging microtubules promotes overlap length-dependent sliding of kinetochore fibers and thus the alignment of sister kinetochores at the spindle equator. Finally, we discuss theoretical models of forces acting on chromosomes during metaphase.


Assuntos
Cromossomos , Cinetocoros , Anáfase , Fenômenos Biomecânicos , Metáfase , Microtúbulos , Mitose , Fuso Acromático
11.
Nat Commun ; 7: 10298, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728792

RESUMO

During metaphase, forces on kinetochores are exerted by k-fibres, bundles of microtubules that end at the kinetochore. Interestingly, non-kinetochore microtubules have been observed between sister kinetochores, but their function is unknown. Here we show by laser-cutting of a k-fibre in HeLa and PtK1 cells that a bundle of non-kinetochore microtubules, which we term 'bridging fibre', bridges sister k-fibres and balances the interkinetochore tension. We found PRC1 and EB3 in the bridging fibre, suggesting that it consists of antiparallel dynamic microtubules. By using a theoretical model that includes a bridging fibre, we show that the forces at the pole and at the kinetochore depend on the bridging fibre thickness. Moreover, our theory and experiments show larger relaxation of the interkinetochore distance for cuts closer to kinetochores. We conclude that the bridging fibre, by linking sister k-fibres, withstands the tension between sister kinetochores and enables the spindle to obtain a curved shape.


Assuntos
Cinetocoros/fisiologia , Microtúbulos/fisiologia , Fenômenos Biomecânicos , Linhagem Celular Tumoral , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA