Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 369
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(1): 534-544, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108291

RESUMO

A symbiotic microalgal-bacterial biofilm can enable efficient carbon (C) and nitrogen (N) removal during aeration-free wastewater treatment. However, the contributions of microalgae and bacteria to C and N removal remain unexplored. Here, we developed a baffled oxygenic microalgal-bacterial biofilm reactor (MBBfR) for the nonaerated treatment of greywater. A hydraulic retention time (HRT) of 6 h gave the highest biomass concentration and biofilm thickness as well as the maximum removal of chemical oxygen demand (94.8%), linear alkylbenzenesulfonates (LAS, 99.7%), and total nitrogen (97.4%). An HRT of 4 h caused a decline in all of the performance metrics due to LAS biotoxicity. Most of C (92.6%) and N (95.7%) removals were ultimately associated with newly synthesized biomass, with only minor fractions transformed into CO2 (2.2%) and N2 (1.7%) on the function of multifarious-related enzymes in the symbiotic biofilm. Specifically, microalgae photosynthesis contributed to the removal of C and N at 75.3 and 79.0%, respectively, which accounted for 17.3% (C) and 16.7% (N) by bacteria assimilation. Oxygen produced by microalgae favored the efficient organics mineralization and CO2 supply by bacteria. The symbiotic biofilm system achieved stable and efficient removal of C and N during greywater treatment, thus providing a novel technology to achieve low-energy-input wastewater treatment, reuse, and resource recovery.


Assuntos
Microalgas , Águas Residuárias , Eliminação de Resíduos Líquidos , Microalgas/metabolismo , Oxigênio , Dióxido de Carbono , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Biofilmes , Nitrogênio/análise , Nitrogênio/metabolismo , Biomassa , Redes e Vias Metabólicas
2.
Environ Sci Technol ; 58(26): 11514-11524, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38757358

RESUMO

PFAS (poly- and per-fluorinated alkyl substances) represent a large family of recalcitrant organic compounds that are widely used and pose serious threats to human and ecosystem health. Here, palladium (Pd0)-catalyzed defluorination and microbiological mineralization were combined in a denitrifying H2-based membrane biofilm reactor to remove co-occurring perfluorooctanoic acid (PFOA) and nitrate. The combined process, i.e., Pd-biofilm, enabled continuous removal of ∼4 mmol/L nitrate and ∼1 mg/L PFOA, with 81% defluorination of PFOA. Metagenome analysis identified bacteria likely responsible for biodegradation of partially defluorinated PFOA: Dechloromonas sp. CZR5, Kaistella koreensis, Ochrobacterum anthropic, and Azospira sp. I13. High-performance liquid chromatography-quadrupole time-of-flight mass spectrometry and metagenome analyses revealed that the presence of nitrate promoted microbiological oxidation of partially defluorinated PFOA. Taken together, the results point to PFOA-oxidation pathways that began with PFOA adsorption to Pd0, which enabled catalytic generation of partially or fully defluorinated fatty acids and stepwise oxidation and defluorination by the bacteria. This study documents how combining catalysis and microbiological transformation enables the simultaneous removal of PFOA and nitrate.


Assuntos
Biotransformação , Nitratos , Paládio , Nitratos/metabolismo , Paládio/química , Paládio/metabolismo , Catálise , Poluentes Químicos da Água/metabolismo , Fluorocarbonos/metabolismo , Caprilatos/metabolismo , Biodegradação Ambiental
3.
Environ Sci Technol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940696

RESUMO

While partial nitrification (PN) has the potential to reduce energy for aeration, it has proven to be unstable when treating low-strength wastewater. This study introduces an innovative combined strategy incorporating a low rate of oxygen supply, pH control, and sulfide addition to selectively inhibit nitrite-oxidizing bacteria (NOB). This strategy led to a stable PN in a laboratory-scale membrane aerated biofilm reactor (MABR). Over a period of 260 days, the nitrite accumulation ratio exceeded 60% when treating synthetic sewage containing 50 mg NH4+-N/L. Through in situ activity testing and high-throughput sequencing, the combined strategy led to low levels of nitrite-oxidation activity (<5.5 mg N/m2 h), Nitrospira species (relative abundance <1%), and transcription of nitrite-oxidation genes (undetectable). The addition of sulfide led to simultaneous PN and autotrophic denitrification in the single-stage MABR, resulting in over 60% total inorganic nitrogen removal. Sulfur-based autotrophic denitrification consumed nitrite and inhibited NOB conversion of nitrite to nitrate. The combined strategy has potential to be applied in large-scale sewage treatment and deserves further exploration.

4.
Environ Sci Technol ; 58(24): 10644-10651, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38832916

RESUMO

Microbial reduction of perchlorate (ClO4-) is emerging as a cost-effective strategy for groundwater remediation. However, the effectiveness of perchlorate reduction can be suppressed by the common co-contamination of nitrate (NO3-). We propose a means to overcome the limitation of ClO4- reduction: depositing palladium nanoparticles (Pd0NPs) within the matrix of a hydrogenotrophic biofilm. Two H2-based membrane biofilm reactors (MBfRs) were operated in parallel in long-term continuous and batch modes: one system had only a biofilm (bio-MBfR), while the other incorporated biogenic Pd0NPs in the biofilm matrix (bioPd-MBfR). For long-term co-reduction, bioPd-MBfR had a distinct advantage of oxyanion reduction fluxes, and it particularly alleviated the competitive advantage of NO3- reduction over ClO4- reduction. Batch tests also demonstrated that bioPd-MBfR gave more rapid reduction rates for ClO4- and ClO3- compared to those of bio-MBfR. Both biofilm communities were dominated by bacteria known to be perchlorate and nitrate reducers. Functional-gene abundances reflecting the intracellular electron flow from H2 to NADH to the reductases were supplanted by extracellular electron flow with the addition of Pd0NPs.


Assuntos
Biofilmes , Nitratos , Paládio , Percloratos , Paládio/química , Nitratos/metabolismo , Percloratos/metabolismo , Oxirredução , Elétrons , Água Subterrânea/química
5.
Environ Sci Technol ; 58(2): 1390-1398, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38165826

RESUMO

The efficient transfer of H2 plays a critical role in catalytic hydrogenation, particularly for the removal of recalcitrant contaminants from water. One of the most persistent contaminants, perfluorooctanoic acid (PFOA), was used to investigate how the method of H2 transfer affected the catalytic hydrodefluorination ability of elemental palladium nanoparticles (Pd0NPs). Pd0NPs were synthesized through an in situ autocatalytic reduction of Pd2+ driven by H2 from the membrane. The Pd0 nanoparticles were directly deposited onto the membrane fibers to form the catalyst film. Direct delivery of H2 to Pd0NPs through the walls of nonporous gas transfer membranes enhanced the hydrodefluorination of PFOA, compared to delivering H2 through the headspace. A higher H2 lumen pressure (20 vs 5 psig) also significantly increased the defluorination rate, although 5 psig H2 flux was sufficient for full reductive defluorination of PFOA. Calculations made using density functional theory (DFT) suggest that subsurface hydrogen delivered directly from the membrane increases and accelerates hydrodefluorination by creating a higher coverage of reactive hydrogen species on the Pd0NP catalyst compared to H2 delivery through the headspace. This study documents the crucial role of the H2 transfer method in the catalytic hydrogenation of PFOA and provides mechanistic insights into how membrane delivery accelerates hydrodefluorination.


Assuntos
Caprilatos , Fluorocarbonos , Nanopartículas Metálicas , Paládio , Hidrogênio
6.
Environ Res ; 241: 117591, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37926226

RESUMO

It is hard to achieve robustness in anaerobic biodegradation of trichlorophenol (TCP). We hypothesized that specific combinations of environmental factors determine phylogenetic diversity and play important roles in the decomposition and stability of TCP-biodegrading bacteria. The anaerobic bioreactor was operated at 35 °C (H condition) or 30 °C (L condition) and mainly fed with TCP (from 28 µM to 180 µM) and organic material. Metagenome sequencing was combined with 16S rRNA gene amplicon sequencing for the microbial community analysis. The results exhibited that the property of robustness occurred in specific conditions. The corresponding co-occurrence and diversity patterns suggest high collectivization, degree and evenness for robust communities. Two types of core functional taxa were recognized: dechlorinators (unclassified Anaerolineae, Thermanaerothrix and Desulfovibrio) and ring-opening members (unclassified Proteobacteria, Methanosarcina, Methanoperedens, and Rubrobacter). The deterministic process of the expansion of niche of syntrophic bacteria at higher temperatures was confirmed. The reductive and hydrolytic dechlorination mechanisms jointly lead to C-Cl bond cleavage. H ultimately adapted to the stress of high TCP loading, with more abundant ring-opening enzyme (EC 3.1.1.45, ∼55%) and hydrolytic dechlorinase (EC 3.8.1.5, 26.5%) genes than L (∼47%, 10.5%). The functional structure (based on KEGG) in H was highly stable despite the high loading of TCP (up to 60 µM), but not in L. Furthermore, an unknown taxon with multiple functions (dechlorinating and ring-opening) was found based on genetic sequencing; its functional contribution of EC 3.8.1.5 in H (26.5%) was higher than that in L (10.5%), and it possessed a new metabolic pathway for biodegradation of halogenated aromatic compounds. This new finding is supplementary to the robust mechanisms underlying organic chlorine biodegradation, which can be used to support the engineering, regulation, and design of synthetic microbiomes.


Assuntos
Clorofenóis , Anaerobiose , Filogenia , RNA Ribossômico 16S/genética , Bactérias/metabolismo , Biodegradação Ambiental
7.
Bioprocess Biosyst Eng ; 47(2): 223-233, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38142425

RESUMO

Anaerobic succinate fermentations can achieve high-titer, high-yield performance while fixing CO2 through the reductive branch of the tricarboxylic acid cycle. To provide the needed CO2, conventional media is supplemented with significant (up to 60 g/L) bicarbonate (HCO3-), and/or carbonate (CO32-) salts. However, producing these salts from CO2 and natural ores is thermodynamically unfavorable and, thus, energetically costly, which reduces the overall sustainability of the process. Here, a series of composite hollow fiber membranes (HFMs) were first fabricated, after which comprehensive CO2 mass transfer measurements were performed under cell-free conditions using a novel, constant-pH method. Lumen pressure and total HFM surface area were found to be linearly correlated with the flux and volumetric rate of CO2 delivery, respectively. Novel HFM bioreactors were then constructed and used to comprehensively investigate the effects of modulating the CO2 delivery rate on succinate fermentations by engineered Escherichia coli. Through appropriate tuning of the design and operating conditions, it was ultimately possible to produce up to 64.5 g/L succinate at a glucose yield of 0.68 g/g; performance approaching that of control fermentations with directly added HCO3-/CO32- salts and on par with prior studies. HFMs were further found to demonstrate a high potential for repeated reuse. Overall, HFM-based CO2 delivery represents a viable alternative to the addition of HCO3-/CO32- salts to succinate fermentations, and likely other 'dark' CO2-fixing fermentations.


Assuntos
Dióxido de Carbono , Ácido Succínico , Fermentação , Dióxido de Carbono/farmacologia , Sais , Succinatos , Escherichia coli , Carbonatos/farmacologia
8.
Biotechnol Bioeng ; 120(7): 1844-1856, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148477

RESUMO

Hydrogen (H2 ) concentrations that were associated with microbiological respiratory processes (RPs) such as sulfate reduction and methanogenesis were quantified in continuous-flow systems (CFSs) (e.g., bioreactors, sediments). Gibbs free energy yield (ΔÇ´ ~ 0) of the relevant RP has been proposed to control the observed H2 concentrations, but most of the reported values do not align with the proposed energetic trends. Alternatively, we postulate that system characteristics of each experimental design influence all system components including H2 concentrations. To analyze this proposal, a Monod-based mathematical model was developed and used to design a gas-liquid bioreactor for hydrogenotrophic methanogenesis with Methanobacterium bryantii M.o.H. Gas-to-liquid H2 mass transfer, microbiological H2 consumption, biomass growth, methane formation, and Gibbs free energy yields were evaluated systematically. Combining model predictions and experimental results revealed that an initially large biomass concentration created transients during which biomass consumed [H2 ]L rapidly to the thermodynamic H2 -threshold (≤1 nM) that triggerred the microorganisms to stop H2 oxidation. With no H2 oxidation, continuous gas-to-liquid H2 transfer increased [H2 ]L to a level that signaled the methanogens to resume H2 oxidation. Thus, an oscillatory H2 -concentration profile developed between the thermodynamic H2 -threshold (≤1 nM) and a low [H2 ]L (~10 nM) that relied on the rate of gas-to-liquid H2 -transfer. The transient [H2 ]L values were too low to support biomass synthesis that could balance biomass losses through endogenous oxidation and advection; thus, biomass declined continuously and disappeared. A stable [H2 ]L (1807 nM) emerged as a result of abiotic H2 -balance between gas-to-liquid H2 transfer and H2 removal via advection of liquid-phase.


Assuntos
Hidrogênio , Modelos Teóricos , Anaerobiose , Biomassa , Reatores Biológicos/microbiologia , Metano
9.
Environ Sci Technol ; 57(50): 21190-21199, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051765

RESUMO

Bioreduction of Cr(VI) to Cr(III) is a promising technology for removing Cr(VI), but Cr(VI) reduction alone cannot support microbial growth. This study investigated the reduction of Cr(VI) in the presence of three electron acceptors that typically coexist with Cr(VI): NO3-, SO42-, and Fe(III). All three systems could reduce Cr(VI) to Cr(III), but the fate of Cr, its impacts on reduction of the other acceptors, and its impact on the microbial community differed. Although Cr(VI) was continuously removed in the NO3--reduction systems, batch tests showed that denitrification was inhibited primarily through impeding nitrite reduction. The SO42- and Fe(III) reduction systems reduced Cr(VI) using a combination of biotic and abiotic processes. Across all three systems, the abundance of genera capable of reducing Cr(VI) increased following the introduction of Cr(VI). Conversely, the abundance of genera that cannot reduce or resist Cr(VI) decreased, leading to restructuring of the microbial community. Furthermore, the abundance of sulfide oxidizers and Fe(II) oxidizers substantially increased after the introduction of chromate. This study provides fundamental knowledge about how Cr(VI) bioreduction interacts with bioreductions of three other co-contaminating electron acceptors.


Assuntos
Cromatos , Compostos Férricos , Cromatos/metabolismo , Oxirredução , Elétrons , Cromo/metabolismo
10.
Environ Sci Technol ; 57(29): 10733-10744, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37429742

RESUMO

Highly efficient sulfate reduction coupled to autotrophic denitrification plus nitrification is demonstrated by integrating an anaerobic membrane bioreactor (AnMBR) with a membrane aerated biofilm reactor (MABR). Concurrent chemical oxygen demand (COD) removal and sulfate reduction were accomplished in the AnMBR, while simultaneous nitrification and autotrophic denitrification were carried out in the MABR. Separate operation of the MABR achieved >90% total nitrogen (TN) removal when the N/S ratio was controlled at 0.4 gN/gS. The integrated AnMBR-MABR system efficiently resisted influent variability, realizing >95% COD removal in the AnMBR and >75% TN removal in the MABR when the influent COD/N ratio was above 4 gCOD/gN. Membrane fouling did not happen during ∼170 days of operation. Due to sulfide oxidation, a large amount of elemental sulfur (S0) accumulated in the MABR biofilm, where it served as an electron donor for denitrification. Microbial community analysis indicated that Nitrospira and Thiobacillus played key roles in nitrification and sulfide-driven denitrification, respectively, and that they occurred in different layers of the biofilm. This novel process offers advantages of a small land-area footprint, modular operation, and high efficiency electron-donor and oxygen utilizations, particularly for wastewater with a low COD/N ratio.


Assuntos
Nitrificação , Águas Residuárias , Desnitrificação , Nitrogênio , Biofilmes , Reatores Biológicos , Sulfatos
11.
Environ Sci Technol ; 57(7): 2739-2748, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36724064

RESUMO

Adding conductive materials to the cathode of a microbial electrochemical system (MES) can alter the route of interspecies electron transfer and the kinetics of reduction reactions. We tested reductive dechlorination of γ-hexachlorocyclohexane (γ-HCH), along with CH4 production, in MES systems whose cathodes were coated with conductive magnetite nanoparticles (NaFe), biochar (BC), magnetic biochar (FeBC), or anti-conductive silica biochar (SiBC). Coating with NaFe enriched electroactive microorganisms, boosted electro-bioreduction, and accelerated γ-HCH dechlorination and CH4 production. In contrast, BC only accelerated dechlorination, while FeBC only accelerated methanogenesis, because of their assemblies of functional taxa that selectively transferred electrons to those electron sinks. SiBC, which decreased electro-bioreduction, yielded the highest CH4 production and increased methanogens and the mcrA gene. This study provides a strategy to selectively control the distribution of electrons between reductive dechlorination and methanogenesis by adding conductive or anti-conductive materials to the MES's cathode. If the goal is to maximize dechlorination and minimize methane generation, then BC is the optimal conductive material. If the goal is to accelerate electro-bioreduction, then the best addition is NaFe. If the goal is to increase the rate of methanogenesis, adding anti-conductive SiBC is the best.


Assuntos
Elétrons , Hexaclorocicloexano , Transporte de Elétrons , Metano , Anaerobiose
12.
Environ Sci Technol ; 57(51): 21736-21743, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38085930

RESUMO

Biological sulfide oxidation is an efficient means to recover elemental sulfur (S0) as a valuable resource from sulfide-bearing wastewater. This work evaluated the autotrophic sulfide oxidation to S0 in the O2-based membrane biofilm reactor (O2-MBfR). High recovery of S0 (80-90% of influent S) and high sulfide oxidation (∼100%) were simultaneously achieved when the ratio of O2-delivery capacity to sulfide-to S0 surface loading (SL) (O2/S2- → S0 ratio) was around 1.5 (g O2/m2-day/g O2/m2-day). On average, most of the produced S0 was recovered in the MBfR effluent, although the biofilm could be a source or sink for S0. Shallow metagenomic analysis of the biofilm showed that the top sulfide-oxidizing genera present in all stages were Thauera, Thiomonas, Thauera_A, and Pseudomonas. Thiomonas or Pseudomonas was the most important genus in stages that produced almost only S0 (i.e., the O2/S2- → S0 ratio around 1.5 g of the O2/m2-day/g O2/m2-day). With a lower sulfide SL, the S0-producing genes were sqr and fccAB in Thiomonas. With a higher sulfide SL, the S0-producing genes were in the soxABDXYZ system in Pseudomonas. Thus, the biofilm community of the O2-MBfR adapted to different sulfide-to-S0 SLs and corresponding O2-delivery capacities. The results illustrate the potential for S0 recovery using the O2-MBfR.


Assuntos
Reatores Biológicos , Oxigênio , Oxirredução , Enxofre , Biofilmes , Sulfetos , Desnitrificação
13.
Environ Sci Technol ; 57(32): 11948-11957, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531623

RESUMO

Pd0 catalysis and microbially catalyzed reduction of nitrate (NO3--N) were combined as a strategy to increase the kinetics of NO3- reduction and control selectivity to N2 gas versus ammonium (NH4+). Two H2-based membrane biofilm reactors (MBfRs) were tested in continuous mode: one with a biofilm alone (H2-MBfR) and the other with biogenic Pd0 nanoparticles (Pd0NPs) deposited in the biofilm (Pd-H2-MBfR). Solid-state characterizations of Pd0NPs in Pd-H2-MBfR documented that the Pd0NPs were uniformly located along the outer surfaces of the bacteria in the biofilm. Pd-H2-MBfR had a higher rate of NO3- reduction compared to H2-MBfR, especially when the influent NO3- concentration was high (28 mg-N/L versus 14 mg-N/L). Pd-H2-MBfR enriched denitrifiers of Dechloromonas, Azospira, Pseudomonas, and Stenotrophomonas in the microbial community and also increased abundances of genes affiliated with NO3--N reductases, which reflected that the denitrifying bacteria could channel their respiratory electron flow to NO3- reduction to NO2-. N2 selectivity in Pd-H2-MBfR was regulated by the H2/NO3- flux ratio: 100% selectivity to N2 was achieved when the ratio was less than 1.3 e- equiv of H2/e- equiv N, while the selectivity toward NH4+ occurred with larger H2/NO3- flux ratios. Thus, the results with Pd-H2-MBfR revealed two advantages of it over the H2-MBfR: faster kinetics for NO3- removal and controllable selectivity toward N2 versus NH4+. By being able to regulate the H2/NO3- flux ratio, Pd-H2-MBfR has significant implications for improving the efficiency and effectiveness of the NO3- reduction processes, ultimately leading to more environmentally benign wastewater treatment.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Nanopartículas Metálicas , Desnitrificação , Paládio , Reatores Biológicos/microbiologia , Nitratos , Biofilmes , Bactérias , Catálise , Oxirredução
14.
Environ Sci Technol ; 57(1): 666-673, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36445010

RESUMO

Ammunition wastewater contains toxic nitrated explosives like RDX and oxyanions like nitrate and perchlorate. Its treatment is challenged by low efficiency due to contaminant recalcitrance and high cost due to multiple processes needed for separately removing different contaminant types. This paper reports a H2-based low-energy strategy featuring the treatment of explosives via catalytic denitration followed by microbial mineralization coupled with oxyanion reduction. After a nitrate- and perchlorate-reducing biofilm incapable of RDX biodegradation was coated with palladium nanoparticles (Pd0NPs), RDX was rapidly denitrated with a specific catalytic activity of 8.7 gcat-1 min-1, while biological reductions of nitrate and perchlorate remained efficient. In the subsequent 30-day continuous test, >99% of RDX, nitrate, and perchlorate were coremoved, and their effluent concentrations were below their respective regulation levels. Detected intermediates and shallow metagenome analysis suggest that the intermediates after Pd-catalytic denitration of RDX ultimately were enzymatically utilized by the nitrate- and perchlorate-reducing bacteria as additional electron donor sources.


Assuntos
Substâncias Explosivas , Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Substâncias Explosivas/análise , Substâncias Explosivas/metabolismo , Percloratos/análise , Percloratos/metabolismo , Nitratos/análise , Nitratos/metabolismo , Poluentes Químicos da Água/análise , Paládio/análise , Reatores Biológicos/microbiologia
15.
Environ Sci Technol ; 57(18): 7150-7161, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074125

RESUMO

Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Humanos , Inteligência Artificial , Poluentes Químicos da Água/análise , Desinfetantes/análise , Desinfecção , Halogenação
16.
Environ Sci Technol ; 57(41): 15736-15746, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37802050

RESUMO

Biofilms give rise to a range of issues, spanning from harboring pathogens to accelerating microbial-induced corrosion in pressurized water systems. Introducing germicidal UV-C (200-280 nm) irradiation from light-emitting diodes (LEDs) into flexible side-emitting optical fibers (SEOFs) presents a novel light delivery method to inhibit the accumulation of biofilms on surfaces found in small-diameter tubing or other intricate geometries. This work used surfaces fully submerged in flowing water that contained Pseudomonas aeruginosa, an opportunistic pathogen commonly found in water system biofilms. A SEOF delivered a UV-C gradient to the surface for biofilm inhibition. Biofilm growth over time was monitored in situ using optical conference tomography. Biofilm formation was effectively inhibited when the 275 nm UV-C irradiance was ≥8 µW/cm2. Biofilm samples were collected from several regions on the surface, representing low and high UV-C irradiance. RNA sequencing of these samples revealed that high UV-C irradiance inhibited the expression of functional genes related to energy metabolism, DNA repair, quorum sensing, polysaccharide production, and mobility. However, insufficient sublethal UV-C exposure led to upregulation genes for SOS response and quorum sensing as survival strategies against the UV-C stress. These results underscore the need to maintain minimum UV-C exposure on surfaces to effectively inhibit biofilm formation in water systems.


Assuntos
Incrustação Biológica , Pseudomonas aeruginosa/fisiologia , Fibras Ópticas , Desinfecção/métodos , Biofilmes/efeitos da radiação , Água , Percepção de Quorum
17.
Biodegradation ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917252

RESUMO

Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane's common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.

18.
J Am Chem Soc ; 144(7): 2933-2942, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157427

RESUMO

Light-activated photosystem II (PSII) carries out the critical step of splitting water in photosynthesis. However, PSII is susceptible to light-induced damage. Here, results are presented from a novel microbial electro-photosynthetic system (MEPS) that uses redox mediators in conjunction with an electrode to drive electron transport in live Synechocystis (ΔpsbB) cells lacking PSII. MEPS-generated, light-dependent current increased with light intensity up to 2050 µmol photons m-2 s-1, which yielded a delivery rate of 113 µmol electrons h-1 mg-chl-1 and an average current density of 150 A m-2 s-1 mg-chl-1. P700+ re-reduction kinetics demonstrated that initial rates exceeded wildtype PSII-driven electron delivery. The electron delivery occurs ahead of the cytochrome b6f complex to enable both NADPH and ATP production. This work demonstrates an electrochemical system that can drive photosynthetic electron transport, provides a platform for photosynthetic foundational studies, and has the potential for improving photosynthetic performance at high light intensities.


Assuntos
Proteínas de Bactérias/metabolismo , Hidroquinonas/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema I/metabolismo , Proteínas de Bactérias/genética , Complexo Citocromos b6f/metabolismo , Eletroquímica/instrumentação , Eletroquímica/métodos , Elétrons , Hidroquinonas/química , Fotossíntese/genética , Complexo de Proteína do Fotossistema II/genética , Synechocystis/metabolismo
19.
Environ Sci Technol ; 56(7): 4447-4456, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35230835

RESUMO

Reductive catalysis by zero-valent palladium nanoparticles (Pd0NPs) has emerged as an efficient strategy for promoting the detoxification of chlorophenols (CPs) via hydrogenation. Most studies achieved hydrodechlorination of CP to phenol for detoxification, but it requires considerably high energy input and harsh conditions to further hydrosaturate phenol to cyclohexanone (CHN) as the most desired product for resource recovery. This study documented 4-CP hydrodechlorination and hydrosaturation catalyzed by Pd0NPs deposited on H2-transfer membranes in the H2-based membrane catalyst-film reactor, which yielded up to 99% CHN selectivity under ambient conditions. It was further discovered that the Pd0 morphology and size, both determined by Pd0 loading, were the key factors controlling the catalytic activity and selectivity: while sub-nano Pd particles catalyzed only 4-CP hydrodechlorination, Pd0NPs were able to catalyze the subsequent hydrosaturation that requires more Pd0 reactive sites than hydrodechlorination. In addition, better dispersion of Pd0, caused by lower Pd0 loading, yielded higher activity for hydrodechlorination but lower activity for hydrosaturation. During the 15 day continuous tests, the substantial product from 4-CP hydrogenation was constantly phenol (>98%) for 0.2 g-Pd/m2 and CHN (>92%) for 1.0 g-Pd/m2. This study opens the door for selectively manipulating desired products from Pd0-catalyzed CP hydrogenation under ambient conditions.


Assuntos
Clorofenóis , Nanopartículas Metálicas , Catálise , Clorofenóis/química , Paládio/química , Fenol/química
20.
Environ Sci Technol ; 56(18): 13357-13367, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36070436

RESUMO

Among a number of persistent chlorofluorocarbons (CFCs, or freons), the emissions of trichlorofluoromethane (CFCl3, CFC-11) have been increasing since 2002. Zero-valent-Pd (Pd0) catalysts are known to hydrodehalogenate CFCs; however, most studies rely on cost-inefficient and eco-unfriendly chemical synthesis of Pd0NPs and harsh reaction conditions. In this study, we synthesized Pd0 nanoparticles (Pd0NPs) using D. vulgaris biomass as the support and evaluated hydrodehalogenation of CFC-11 catalyzed by the biogenic Pd0NPs. The presence of D. vulgaris biomass stabilized and dispersed 3-6 nm Pd0NPs that were highly active. We documented, for the first time, Pd0-catalyzed simultaneous hydrodechlorination and hydrodefluorination of CFC-11 at ambient conditions (room temperature and 1 atm). More than 70% CFC-11 removal was achieved within 15 h with a catalytic activity of 1.5 L/g-Pd/h, dechlorination was 50%, defluorination was 41%, and selectivity to fully dehalogenated methane was >30%. The reaction pathway had a mixture of parallel and sequential hydrodehalogenation. In particular, hydrodefluorination was favored by higher H2 availability and Pd0:CFC-11 ratio. This study offers a promising strategy for efficient and sustainable treatment of freon-contaminated water.


Assuntos
Nanopartículas Metálicas , Paládio , Catálise , Clorofluorcarbonetos , Clorofluorcarbonetos de Metano , Metano , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA