Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Appl Environ Microbiol ; 83(11)2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28341681

RESUMO

Photobacterium damselae subsp. damselae is a pathogen of marine animals, including fish of importance in aquaculture. The virulence plasmid pPHDD1, characteristic of highly hemolytic isolates, encodes the hemolysins damselysin (Dly) and phobalysin (PhlyP). Strains lacking pPHDD1 constitute the vast majority of the isolates from fish outbreaks, but genetic studies to identify virulence factors in plasmidless strains are scarce. Here, we show that the chromosome I-encoded hemolysin PhlyC plays roles in virulence and cell toxicity in pPHDD1-negative isolates of this pathogen. By combining the analyses of whole genomes and of gene deletion mutants, we identified two hitherto uncharacterized chromosomal loci encoding a phospholipase (PlpV) and a collagenase (ColP). PlpV was ubiquitous in the subspecies and exerted hemolytic activity against fish erythrocytes, which was enhanced in the presence of lecithin. ColP was restricted to a fraction of the isolates and was responsible for the collagen-degrading activity in this subspecies. Consistent with the presence of signal peptides in PlpV and ColP sequences, mutants for the type II secretion system (T2SS) genes epsL and pilD exhibited impairments in phospholipase and collagenase activities. Sea bass virulence experiments and cell culture assays demonstrated major contributions of PhlyC and PlpV to virulence and toxicity.IMPORTANCE This study constitutes genetic and genomic analyses of plasmidless strains of an emerging pathogen in marine aquaculture, Photobacterium damselae subsp. damselae To date, studies on the genetic basis of virulence were restricted to the pPHDD1 plasmid-encoded toxins Dly and PhlyP. However, the vast majority of the recent isolates of this pathogen from fish farm outbreaks lack this plasmid. Here we demonstrate that the plasmidless strains produce two hitherto uncharacterized ubiquitous toxins encoded in chromosome I, namely, the hemolysin PhlyC and the phospholipase PlpV. We report the main roles of these two toxins in fish virulence and in cell toxicity. Our results constitute the basis for a better understanding of the virulence of a widespread marine pathogen.


Assuntos
Cromossomos Bacterianos/genética , Colagenases/metabolismo , Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Negativas/veterinária , Fosfolipases/metabolismo , Photobacterium/enzimologia , Photobacterium/patogenicidade , Animais , Bass/microbiologia , Cromossomos Bacterianos/metabolismo , Colagenases/genética , Infecções por Bactérias Gram-Negativas/microbiologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Fosfolipases/genética , Photobacterium/genética , Photobacterium/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Virulência
2.
Biochem J ; 473(13): 1929-40, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27147619

RESUMO

Staphylococcus aureus is a leading cause of bacterial infections in humans, including life-threatening diseases such as pneumonia and sepsis. Its small membrane-pore-forming α-toxin is considered an important virulence factor. By destroying cell-cell contacts through cleavage of cadherins, the metalloproteinase ADAM10 (a disintegrin and metalloproteinase 10) critically contributes to α-toxin-dependent pathology of experimental S. aureus infections in mice. Moreover, ADAM10 was proposed to be a receptor for α-toxin. However, it is unclear whether the catalytic activity or specific domains of ADAM10 are involved in mediating binding and/or subsequent cytotoxicity of α-toxin. Also, it is not known how α-toxin triggers ADAM10's enzymatic activity, and whether ADAM10 is invariably required for all α-toxin action on cells. In the present study, we show that efficient cleavage of the ADAM10 substrate epithelial cadherin (E-cadherin) requires supra-cytotoxic concentrations of α-toxin, leading to significant increases in intracellular [Ca(2+)]; the fall in cellular ATP levels, typically following membrane perforation, became observable at far lower concentrations. Surprisingly, ADAM10 was dispensable for α-toxin-dependent xenophagic targeting of S. aureus, whereas a role for α-toxin attack on the plasma membrane was confirmed. The catalytic site of ADAM10, furin cleavage site, cysteine switch and intracellular domain of ADAM10 were not required for α-toxin binding and subsequent cytotoxicity. In contrast, an essential role for the disintegrin domain and the prodomain emerged. Thus, co-expression of the prodomain with prodomain-deficient ADAM10 reconstituted binding of α-toxin and susceptibility of ADAM10-deficient cells. The results of the present study may help to inform structural analyses of α-toxin-ADAM10 interactions and to design novel strategies to counteract S. aureus α-toxin action.


Assuntos
Proteína ADAM10/química , Proteína ADAM10/metabolismo , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Staphylococcus aureus/metabolismo , Proteína ADAM10/genética , Animais , Toxinas Bacterianas/química , Caderinas/genética , Caderinas/metabolismo , Cálcio/metabolismo , Domínio Catalítico/genética , Membrana Celular/metabolismo , Células Cultivadas , Proteínas Hemolisinas/química , Camundongos , Camundongos Knockout , Ligação Proteica , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/patogenicidade
3.
Infect Immun ; 83(4): 1246-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25583529

RESUMO

Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyApl) and the chromosome-encoded HlyA (HlyAch) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL, a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyAch secretion. In addition, mutation of epsL in a pPHDD1-harboring strain caused an almost complete abolition of hemolytic activity against sheep erythrocytes, indicating that epsL plays a major role in secretion of the plasmid-encoded HlyApl and Dly. This was further demonstrated by analysis of different combinations of hemolysin gene mutants and by strain-strain complementation assays. We also found that mutation of the putative prepilin peptidase gene pilD severely affected hemolysis, which dropped at levels inferior to those of epsL mutants. Promoter expression analyses suggested that impairment of hemolysin secretion in epsL and pilD mutants might constitute a signal that affects hemolysin and T2SS gene expression at the transcriptional level. In addition, single epsL and pilD mutations caused a drastic decrease in virulence for mice, demonstrating a major role of T2SS and pilD in P. damselae subsp. damselae virulence.


Assuntos
Sistemas de Secreção Bacterianos , Proteínas Hemolisinas/metabolismo , Photobacterium/patogenicidade , Fatores de Virulência/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Endopeptidases/genética , Endopeptidases/metabolismo , Eritrócitos/patologia , Proteínas Hemolisinas/genética , Hemólise , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Photobacterium/genética , Photobacterium/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Análise de Sequência de DNA , Transcrição Gênica , Transposases/genética , Fatores de Virulência/genética
4.
Infect Immun ; 83(11): 4335-48, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26303391

RESUMO

Photobacterium damselae subsp. damselae, an important pathogen of marine animals, may also cause septicemia or hyperaggressive necrotizing fasciitis in humans. We previously showed that hemolysin genes are critical for virulence of this organism in mice and fish. In the present study, we characterized the hlyA gene product, a putative small ß-pore-forming toxin, and termed it phobalysin P (PhlyP), for "photobacterial lysin encoded on a plasmid." PhlyP formed stable oligomers and small membrane pores, causing efflux of K(+), with no significant leakage of lactate dehydrogenase but entry of vital dyes. The latter feature distinguished PhlyP from the related Vibrio cholerae cytolysin. Attack by PhlyP provoked a loss of cellular ATP, attenuated translation, and caused profound morphological changes in epithelial cells. In coculture experiments with epithelial cells, Photobacterium damselae subsp. damselae led to rapid hemolysin-dependent membrane permeabilization. Unexpectedly, hemolysins also promoted the association of P. damselae subsp. damselae with epithelial cells. The collective observations of this study suggest that membrane-damaging toxins commonly enhance bacterial adherence.


Assuntos
Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Photobacterium/metabolismo , Sequência de Aminoácidos , Animais , Aderência Bacteriana , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Células Epiteliais/microbiologia , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Proteínas Hemolisinas/química , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidade , Hemólise , Humanos , Dados de Sequência Molecular , Photobacterium/química , Photobacterium/genética , Coelhos , Alinhamento de Sequência
5.
Appl Environ Microbiol ; 81(17): 5867-79, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26092457

RESUMO

The fish pathogen Photobacterium damselae subsp. piscicida produces the siderophore piscibactin. A gene cluster that resembles the Yersinia high-pathogenicity island (HPI) encodes piscibactin biosynthesis. Here, we report that this HPI-like cluster is part of a hitherto-uncharacterized 68-kb plasmid dubbed pPHDP70. This plasmid lacks homologs of genes that mediate conjugation, but we found that it could be transferred at low frequencies from P. damselae subsp. piscicida to a mollusk pathogenic Vibrio alginolyticus strain and to other Gram-negative bacteria, likely dependent on the conjugative functions of the coresident plasmid pPHDP60. Following its conjugative transfer, pPHDP70 restored the capacity of a vibrioferrin mutant of V. alginolyticus to grow under low-iron conditions, and piscibactin became detectable in its supernatant. Thus, pPHDP70 appears to harbor all the genes required for piscibactin biosynthesis and transport. P. damselae subsp. piscicida strains cured of pPHDP70 no longer produced piscibactin, had impaired growth under iron-limited conditions, and exhibited markedly decreased virulence in fish. Collectively, our findings highlight the importance of pPHDP70, with its capacity for piscibactin-mediated iron acquisition, in the virulence of P. damselae subsp. piscicida. Horizontal transmission of this plasmid-borne piscibactin synthesis gene cluster in the marine environment may facilitate the emergence of new pathogens.


Assuntos
Doenças dos Peixes/microbiologia , Transferência Genética Horizontal , Ilhas Genômicas , Infecções por Bactérias Gram-Negativas/veterinária , Photobacterium/genética , Photobacterium/metabolismo , Plasmídeos/genética , Sideróforos/biossíntese , Animais , Infecções por Bactérias Gram-Negativas/microbiologia , Ferro/metabolismo , Dados de Sequência Molecular , Photobacterium/patogenicidade , Plasmídeos/metabolismo , Virulência
6.
Infect Immun ; 81(9): 3287-99, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23798530

RESUMO

Photobacterium damselae subsp. damselae causes infections and fatal disease in marine animals and in humans. Highly hemolytic strains produce damselysin (Dly) and plasmid-encoded HlyA (HlyA(pl)). These hemolysins are encoded by plasmid pPHDD1 and contribute to hemolysis and virulence for fish and mice. In this study, we report that all the hemolytic strains produce a hitherto uncharacterized chromosome-encoded HlyA (HlyAch). Hemolysis was completely abolished in a single hlyAch mutant of a plasmidless strain and in a dly hlyApl hlyAch triple mutant. We found that Dly, HlyA(pl), and HlyAch are needed for full hemolytic values in strains harboring pPHDD1, and these values are the result of the additive effects between HlyApl and HlyAch, on the one hand, and of the synergistic effect of Dly with HlyApl and HlyAch, on the other hand. Interestingly, Dly-producing strains produced synergistic effects with strains lacking Dly production but secreting HlyA, constituting a case of the CAMP (Christie, Atkins, and Munch-Petersen) reaction. Environmental factors such as iron starvation and salt concentration were found to regulate the expression of the three hemolysins. We found that the contributions, in terms of the individual and combined effects, of the three hemolysins to hemolysis and virulence varied depending on the animal species tested. While Dly and HlyApl were found to be main contributors in the virulence for mice, we observed that the contribution of hemolysins to virulence for fish was mainly based on the synergistic effects between Dly and either of the two HlyA hemolysins rather than on their individual effects.


Assuntos
Cromossomos/genética , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Photobacterium/genética , Photobacterium/metabolismo , Plasmídeos/genética , Animais , Cromossomos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Doenças dos Peixes/genética , Doenças dos Peixes/metabolismo , Doenças dos Peixes/microbiologia , Peixes/genética , Peixes/metabolismo , Peixes/microbiologia , Hemólise/genética , Ferro/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Photobacterium/patogenicidade , Plasmídeos/metabolismo , Cloreto de Sódio/metabolismo , Transcrição Gênica/genética , Virulência/genética
7.
Infect Immun ; 79(11): 4617-27, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21875966

RESUMO

Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a marine bacterium that causes infections and fatal disease in a wide range of marine animals and in humans. Highly hemolytic strains produce damselysin (Dly), a cytolysin encoded by the dly gene that is lethal for mice and has hemolytic activity. We found that Dly is encoded in the highly hemolytic strain RM-71 within a 153,429-bp conjugative plasmid that we dubbed pPHDD1. In addition to Dly, pPHDD1 also encodes a homologue of the pore-forming toxin HlyA. We found a direct correlation between presence of pPHDD1 and a strong hemolytic phenotype in a collection of P. damselae subsp. damselae isolates. Hemolysis was strongly reduced in a double dly hlyA mutant, demonstrating the role of the two pPHDD1-encoded genes in hemolysis. Interestingly, although single hlyA and dly mutants showed different levels of hemolysis reduction depending on the erythrocyte source, hemolysis was not abolished in any of the single mutants, suggesting that the hemolytic phenotype is the result of the additive effect of Dly and HlyA. We found that pPHDD1-encoded dly and hlyA genes are necessary for full virulence for mice and fish. Our results suggest that pPHDD1 can be considered as a driving force for the emergence of a highly hemolytic lineage of P. damselae subsp. damselae.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas Hemolisinas/metabolismo , Photobacterium/metabolismo , Photobacterium/patogenicidade , Plasmídeos/metabolismo , Animais , Proteínas de Bactérias/genética , Doenças dos Peixes/microbiologia , Linguados , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Hemolisinas/genética , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Ovinos/sangue , Virulência
8.
Microbiology (Reading) ; 157(Pt 7): 2106-2119, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21546587

RESUMO

Lactococcus garvieae is the causative microbial agent of lactococcosis, an important and damaging fish disease in aquaculture. This bacterium has also been isolated from vegetables, milk, cheese, meat and sausages, from cow and buffalo as a mastitis agent, and even from humans, as an opportunistic infectious agent. In this work pathogenicity experiments were performed in rainbow trout and mouse models with strains isolated from human (L. garvieae HF) and rainbow trout (L. garvieae UNIUDO74; henceforth referred to as 074). The mean LD(50) value in rainbow trout obtained for strain 074 was 2.1 × 10(2) ± 84 per fish. High doses of the bacteria caused specific signs of disease as well as histological alterations in mice. In contrast, strain HF did not prove to be pathogenic either for rainbow trout or for mice. Based on these virulence differences, two suppressive subtractive hybridizations were carried out to identify unique genetic sequences present in L. garvieae HF (SSHI) and L. garvieae 074 (SSHII). Differential dot-blot screening of the subtracted libraries allowed the identification of 26 and 13 putative ORFs specific for L. garvieae HF and L. garvieae 074, respectively. Additionally, a PCR-based screening of 12 of the 26 HF-specific putative ORFs and the 13 074-specific ones was conducted to identify their presence/absence in 25 L. garvieae strains isolated from different origins and geographical areas. This study demonstrates the existence of genetic heterogeneity within L. garvieae isolates and provides a more complete picture of the genetic background of this bacterium.


Assuntos
Doenças dos Peixes/microbiologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus/genética , Lactococcus/patogenicidade , Oncorhynchus mykiss/microbiologia , Animais , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/genética , Variação Genética , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Lactococcus/isolamento & purificação , Proteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , Fases de Leitura Aberta , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Fatores de Virulência/genética
9.
Toxins (Basel) ; 11(7)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315179

RESUMO

Phobalysin P (PhlyP, for photobacterial lysin encoded on a plasmid) is a recently described small ß-pore forming toxin of Photobacterium damselae subsp. damselae (Pdd). This organism, belonging to the family of Vibrionaceae, is an emerging pathogen of fish and various marine animals, which occasionally causes life-threatening soft tissue infections and septicemia in humans. By using genetically modified Pdd strains, PhlyP was found to be an important virulence factor. More recently, in vitro studies with purified PhlyP elucidated some basic consequences of pore formation. Being the first bacterial small ß-pore forming toxin shown to trigger calcium-influx dependent membrane repair, PhlyP has advanced to a revealing model toxin to study this important cellular function. Further, results from co-culture experiments employing various Pdd strains and epithelial cells together with data on other bacterial toxins indicate that limited membrane damage may generally enhance the association of bacteria with target cells. Thereby, remodeling of plasma membrane and cytoskeleton during membrane repair could be involved. In addition, a chemotaxis-dependent attack-and track mechanism influenced by environmental factors like salinity may contribute to PhlyP-dependent association of Pdd with cells. Obviously, a synoptic approach is required to capture the regulatory links governing the interaction of Pdd with target cells. The characterization of Pdd's secretome may hold additional clues because it may lead to the identification of proteases activating PhlyP's pro-form. Current findings on PhlyP support the notion that pore forming toxins are not just killer proteins but serve bacteria to fulfill more subtle functions, like accessing their host.


Assuntos
Proteínas de Bactérias , Proteínas Hemolisinas , Photobacterium , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Adesão Celular/efeitos dos fármacos , Membrana Celular , Quimiotaxia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/fisiologia , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Proteínas Hemolisinas/farmacologia , Humanos , Fenótipo , Photobacterium/genética , Photobacterium/metabolismo
10.
Front Microbiol ; 9: 2996, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619115

RESUMO

Photobacterium damselae subsp. damselae (Pdd) is an emerging pathogen of marine animals that sometimes causes serious infections in humans. Two related pore forming toxins, phobalysins P and C, and damselysin, a phospholipase D, confer strong virulence of Pdd in mice. Because infections by Pdd are typically caused following exposure of wounds to sea water we investigated how salinity impacts toxin activity, swimming, and association of Pdd with epithelial cells. These activities were low when bacteria were pre-cultured in media with 3.5% NaCl, the global average salinity of sea water. In contrast, lower salinity increased swimming of wild type Pdd peaking at 2% NaCl, hemolysis, and association with epithelial cells peaking at 1-1.5%. Previously, we have found that hemolysin genes enhance the association of Pdd with epithelial cells, but the underlying mechanisms have remained ill-defined. We here searched for potential links between hemolysin-production, chemotaxis and association of Pdd with target cells at varying salt concentrations. Unexpectedly, disruption of chemotaxis regulator cheA not only affected bacterial swimming and association with epithelial cells at intermediate to low salinity, but also reduced the production of plasmid-encoded phobalysin (PhlyP). The results thus reveal unforeseen links between chemotaxis regulators, a pore forming toxin and the association of a marine bacterium with target cells.

11.
mBio ; 8(1)2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28196960

RESUMO

Membrane repair emerges as an innate defense protecting target cells against bacterial pore-forming toxins. Here, we report the first paradigm of Ca2+-dependent repair following attack by a small ß-pore-forming toxin, namely, plasmid-encoded phobalysin of Photobacterium damselae subsp. damselae In striking contrast, Vibrio cholerae cytolysin, the closest ortholog of phobalysin, subverted repair. Mutational analysis uncovered a role of channel width in toxicity and repair. Thus, the replacement of serine at phobalysin´s presumed channel narrow point with the bulkier tryptophan, the corresponding residue in Vibrio cholerae cytolysin (W318), modulated Ca2+ influx, lysosomal exocytosis, and membrane repair. And yet, replacing tryptophan (W318) with serine in Vibrio cholerae cytolysin enhanced toxicity. The data reveal divergent strategies evolved by two related small ß-pore-forming toxins to manipulate target cells: phobalysin leads to fulminant perturbation of ion concentrations, closely followed by Ca2+ influx-dependent membrane repair. In contrast, V. cholerae cytolysin causes insidious perturbations and escapes control by the cellular wounded membrane repair-like response.IMPORTANCE Previous studies demonstrated that large transmembrane pores, such as those formed by perforin or bacterial toxins of the cholesterol-dependent cytolysin family, trigger rapid, Ca2+ influx-dependent repair mechanisms. In contrast, recovery from attack by the small ß-pore-forming Staphylococcus aureus alpha-toxin or aerolysin is slow in comparison and does not depend on extracellular Ca2+ To further elucidate the scope of Ca2+ influx-dependent repair and understand its limitations, we compared the cellular responses to phobalysin and V. cholerae cytolysin, two related small ß-pore-forming toxins which create membrane pores of slightly different sizes. The data indicate that the channel width of a small ß-pore-forming toxin is a critical determinant of both primary toxicity and susceptibility to Ca2+-dependent repair.


Assuntos
Toxinas Bacterianas/química , Membrana Celular/metabolismo , Nanoporos , Perforina/metabolismo , Toxinas Bacterianas/metabolismo , Cálcio , Membrana Celular/química , Membrana Celular/ultraestrutura , Humanos , Vibrio cholerae/química
12.
Front Microbiol ; 8: 582, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28443076

RESUMO

The marine pathogenic bacterium Photobacterium damselae subsp. damselae causes septicemia in marine animals and in humans. The pPHDD1 plasmid-encoded hemolysins damselysin (Dly) and phobalysin P (PhlyP), and the chromosome-encoded hemolysin phobalysin C (PhlyC) constitute its main virulence factors. However, the mechanisms by which expression of these three hemolysins is regulated remain unknown. Here we report the isolation of a mini-Tn10 transposon mutant which showed a strong impairment in its hemolytic activity. The transposon disrupted a putative sensor histidine kinase gene vda_000600 (rstB), which together with vda_000601 (rstA) is predicted to encode a putative two-component regulatory system. This system showed to be homologous to the Vibrio cholerae CarSR/VprAB and Escherichia coli RstAB systems. Reconstruction of the mutant by allelic exchange of rstB showed equal impairment in hemolysis, and complementation with a plasmid expressing rstAB restored hemolysis to wild-type levels. Remarkably, we demonstrated by promoter expression analyses that the reduced hemolysis in the rstB mutant was accompanied by a strong decrease in transcription activities of the three hemolysin genes dly (damselysin), hlyApl (phobalysin P) and hlyAch (phobalysin C). Thus, RstB, encoded in the small chromosome, regulates plasmid and chromosomal virulence genes. We also found that reduced expression of the three virulence genes correlated with a strong decrease in virulence in a sea bass model, demonstrating that RstB constitutes a master regulator of the three P. damselae subsp. damselae hemolysins and plays critical roles in the pathogenicity of this bacterium. This study represents the first evidence of a direct role of a RstAB-like system in the regulation of bacterial toxins.

13.
Front Immunol ; 6: 383, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284068

RESUMO

We report on the role of conserved stress-response pathways for cellular tolerance to a pore forming toxin. First, we observed that small molecular weight inhibitors including of eIF2α-phosphatase, jun-N-terminal kinase (JNK), and PI3-kinase sensitized normal mouse embryonal fibroblasts (MEFs) to the small pore forming S. aureus α-toxin. Sensitization depended on expression of mADAM10, the murine ortholog of a proposed high-affinity receptor for α-toxin in human cells. Similarly, eIF2α (S51A/S51A) MEFs, which harbor an Ala knock-in mutation at the regulated Ser51 phosphorylation site of eukaryotic translation initiation factor 2α, were hyper-sensitive to α-toxin. Inhibition of translation with cycloheximide did not mimic the tolerogenic effect of eIF2α-phosphorylation. Notably, eIF2α-dependent tolerance of MEFs was toxin-selective, as wild-type MEFs and eIF2α (S51A/S51A) MEFs exhibited virtually equal sensitivity to Vibrio cholerae cytolysin. Binding of S. aureus α-toxin to eIF2α (S51A/S51A) MEFs and toxicity in these cells were enhanced as compared to wild-type cells. This led to the unexpected finding that the mutant cells carried more ADAM10. Because basal phosphorylation of eIF2α in MEFs required amino acid deprivation-activated eIF2α-kinase 4/GCN2, the data reveal that basal activity of this kinase mediates tolerance of MEFs to α-toxin. Further, they suggest that modulation of ADAM10 is involved. During infection, bacterial growth may cause nutrient shortage in tissues, which might activate this response. Tolerance to α-toxin was robust in macrophages and did not depend on GCN2. However, JNKs appeared to play a role, suggesting differential cell type and toxin selectivity of tolerogenic stress responses. Understanding their function or failure will be important to comprehend anti-bacterial immune responses.

14.
FEMS Microbiol Lett ; 355(2): 152-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24813762

RESUMO

Photobacterium damselae subsp. damselae, a marine bacterium that causes infections in marine animals and in humans, produces up to three different haemolysins involved in virulence, which include the pPHDD1 plasmid-encoded damselysin (Dly) and HlyApl , and the chromosome-encoded HlyAch . We screened 45 isolates from different origins, and found a correlation between their haemolytic phenotypes and the differential haemolysin gene content. All highly and medium haemolytic strains harboured pPHDD1, with amino acid substitutions in HlyApl and HlyAch being the cause of the medium haemolytic phenotypes in some pPHDD1-harbouring strains. Weakly haemolytic strains contained only hlyAch , whereas nonhaemolytic isolates, in addition to lacking pPHDD1, either lacked hlyAch or contained a hlyAch pseudogene. Sequence analysis of the genomic context of hlyAch uncovered an unexpected genetic diversity, suggesting that hlyAch is located in an unstable chromosomal region. Phylogenetic analysis suggested that hlyApl and hlyAch originated by gene duplication within P. damselae subsp. damselae following acquisition by horizontal transfer. These observations together with the differential distribution of pPHDD1 plasmid among strains suggest that horizontal gene transfer has played a main role in shaping the haemolysin gene baggage in this pathogen.


Assuntos
Duplicação Gênica , Transferência Genética Horizontal , Genes Bacterianos , Variação Genética , Photobacterium/genética , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Proteínas Hemolisinas/genética , Fenótipo , Photobacterium/classificação , Filogenia , Plasmídeos/genética , Análise de Sequência de DNA
15.
Front Microbiol ; 4: 283, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24093021

RESUMO

Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA