RESUMO
Plant protein concentrates and isolates are used to produce alternatives to meat, dairy and eggs. Fractionation of ingredients and subsequent processing into food products modify the techno-functional and nutritional properties of proteins. The differences in composition and structure of plant proteins, in addition to the wide range of processing steps and conditions, can have ambivalent effects on protein digestibility. The objective of this review is to assess the current knowledge on the effect of processing of plant protein-rich ingredients on their digestibility. We obtained data on various fractionation conditions and processing after fractionation, including enzymatic hydrolysis, alkaline treatment, heating, high pressure, fermentation, complexation, extrusion, gelation, as well as oxidation and interactions with starch or fibre. We provide an overview of the effect of some processing steps for protein-rich ingredients from different crops, such as soybean, yellow pea, and lentil, among others. Some studies explored the effect of processing on the presence of antinutritional factors. A certain degree, and type, of processing can improve protein digestibility, while more extensive processing can be detrimental. We argue that processing, protein bioavailability and the digestibility of plant-based foods must be addressed in combination to truly improve the sustainability of the current food system.
RESUMO
We report on the effect of processing, particularly heating, on the digestion dynamics of pea proteins using the standardised semi-dynamic in vitro digestion method. Fractions with native proteins were obtained by mild aqueous fractionation of pea flour. A commercial pea protein isolate was chosen as a benchmark. Heating dispersions of pea flour and mild protein fractions reduced the trypsin inhibitory activity to levels similar to that of the protein isolate. Protein-rich and non-soluble protein fractions were up to 18% better hydrolysed after being thermally denatured, particularly for proteins emptied later in the gastric phase. The degree of hydrolysis throughout the digestion was similar for these heated fractions and the conventional isolate. Further heating of the protein isolate reduced its digestibility as much as 9%. Protein solubility enhances the digestibility of native proteins, while heating aggregates the proteins, which ultimately reduces the achieved extent of hydrolysis from gastro-small intestinal enzymes.
Assuntos
Proteínas de Ervilha , Digestão , Farinha , Trato Gastrointestinal/metabolismo , Hidrólise , Proteínas de Ervilha/metabolismoRESUMO
We present a dynamic, semi-mechanistic, compartmental protein digestion model to study the kinetics of protein digestion. The digestive system is described as a series of eight compartments: one for the stomach, one for the duodenum, two for the jejunum and four for the ileum. The digestive processes are described by a set of zero or first order differential equations. The model considers ingestion of a meal, secretion of gastric and pancreatic juices, protein hydrolysis, grinding, transit and amino acid absorption. The model was used to simulate protein digestion of a meal composed of a solid and a liquid phase or one where both phases are blended into a homogeneous phase. Luminal volumes and pH of gastric and duodenal contents were estimated for both meals. Further, gastric emptying is described as a function of the energy density of the bolus, instead of the more common mass action approach.
Assuntos
Motilidade Gastrointestinal , Estômago , Simulação por Computador , Refeições , ProteóliseRESUMO
Enzyme-catalysed hydrolysis is important in protein digestion. Protein hydrolysis is initiated by pepsin at low pH in the stomach. However, pepsin action and acidification happen simultaneously to gastric emptying, especially for liquid meals. Therefore, different extents of exposure to the gastric environment change the composition of the chyme that is emptied from the stomach into the small intestine over time. We assessed the susceptibility of a protein to trypsin-catalysed hydrolysis in the small intestine, depending on its pH and hydrolysis history, simulating chyme at different times after the onset of gastric emptying. Isothermal titration calorimetry was used to study the kinetics of pepsin and trypsin-catalysed hydrolysis. Bovine serum albumin (BSA) that was acidified and hydrolysed with pepsin, showed the highest extent and most efficient hydrolysis by trypsin. BSA in the chyme that would be first emptied from the stomach, virtually bypassing gastric acidity and peptic action, reduced trypsin-catalysed hydrolysis by up to 58% compared to the acidified, intact protein, and 77% less than the acidified, pepsin-hydrolysate. The least efficient substrate for trypsin-catalysed hydrolysis was the acidified, intact protein with a specificity constant (kcat/Km) nearly five times lower than that of the acidified, pepsin-hydrolysate. Our results illustrate the synergy between pepsin and trypsin hydrolysis, and indicate that gastric hydrolysis increases the efficiency of the subsequent trypsin-catalysed hydrolysis of a model protein in the small intestine.