Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Ecol ; 32(4): 904-919, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36448733

RESUMO

Plasmodium relictum is the most widespread avian malaria parasite in the world. It is listed as one of the 100 most dangerous invasive species, having been responsible for the extinction of several endemic bird species, and the near-demise of several others. Here we present the first transcriptomic study focused on the effect of P. relictum on the immune system of its vector (the mosquito Culex quinquefasciatus) at different times post-infection. We show that over 50% of immune genes identified as being part of the Toll pathway and 30%-40% of the immune genes identified within the Imd pathway are overexpressed during the critical period spanning the parasite's oocyst and sporozoite formation (8-12 days), revealing the crucial role played by both these pathways in this natural mosquito-Plasmodium combination. Comparison of infected mosquitoes with their uninfected counterparts also revealed some unexpected immune RNA expression patterns earlier and later in the infection: significant differences in expression of several immune effectors were observed as early as 30 min after ingestion of the infected blood meal. In addition, in the later stages of the infection (towards the end of the mosquito lifespan), we observed an unexpected increase in immune investment in uninfected, but not in infected, mosquitoes. In conclusion, our work extends the comparative transcriptomic analyses of malaria-infected mosquitoes beyond human and rodent parasites and provides insights into the degree of conservation of immune pathways and into the selective pressures exerted by Plasmodium parasites on their vectors.


Assuntos
Culex , Malária Aviária , Plasmodium , Animais , Humanos , Malária Aviária/genética , Malária Aviária/parasitologia , Culex/genética , Mosquitos Vetores/genética , Plasmodium/genética , Expressão Gênica
2.
Genomics ; 113(4): 2327-2337, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023365

RESUMO

The malaria parasite Plasmodium relictum is one of the most widespread species of avian malaria. As in the case of its human counterparts, bird Plasmodium undergoes a complex life cycle infecting two hosts: the arthropod vector and the vertebrate host. In this study, we examined transcriptomes of P. relictum (SGS1) during crucial timepoints within its vector, Culex pipiens quinquefasciatus. Differential gene-expression analyses identified genes linked to the parasites life-stages at: i) a few minutes after the blood meal is ingested, ii) during peak oocyst production phase, iii) during peak sporozoite phase and iv) during the late-stages of the infection. A large amount of genes coding for functions linked to host-immune invasion and multifunctional genes was active throughout the infection cycle. One gene associated with a conserved Plasmodium membrane protein with unknown function was upregulated throughout the parasite development in the vector, suggesting an important role in the successful completion of the sporogonic cycle. Gene expression analysis further identified genes, with unknown functions to be significantly differentially expressed during the infection in the vector as well as upregulation of reticulocyte-binding proteins, which raises the possibility of the multifunctionality of these RBPs. We establish the existence of highly stage-specific pathways being overexpressed during the infection. This first study of gene-expression of a non-human Plasmodium species in its vector provides a comprehensive insight into the molecular mechanisms of the common avian malaria parasite P. relictum and provides essential information on the evolutionary diversity in gene regulation of the Plasmodium's vector stages.


Assuntos
Culex , Malária Aviária , Parasitos , Plasmodium , Animais , Culex/genética , Culex/parasitologia , Malária Aviária/genética , Mosquitos Vetores/parasitologia , Plasmodium/genética
3.
Genome Res ; 28(4): 547-560, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29500236

RESUMO

Avian malaria parasites are prevalent around the world and infect a wide diversity of bird species. Here, we report the sequencing and analysis of high-quality draft genome sequences for two avian malaria species, Plasmodium relictum and Plasmodium gallinaceum We identify 50 genes that are specific to avian malaria, located in an otherwise conserved core of the genome that shares gene synteny with all other sequenced malaria genomes. Phylogenetic analysis suggests that the avian malaria species form an outgroup to the mammalian Plasmodium species, and using amino acid divergence between species, we estimate the avian- and mammalian-infective lineages diverged in the order of 10 million years ago. Consistent with their phylogenetic position, we identify orthologs of genes that had previously appeared to be restricted to the clades of parasites containing Plasmodium falciparum and Plasmodium vivax, the species with the greatest impact on human health. From these orthologs, we explore differential diversifying selection across the genus and show that the avian lineage is remarkable in the extent to which invasion-related genes are evolving. The subtelomeres of the P. relictum and P. gallinaceum genomes contain several novel gene families, including an expanded surf multigene family. We also identify an expansion of reticulocyte binding protein homologs in P. relictum, and within these proteins, we detect distinct regions that are specific to nonhuman primate, humans, rodent, and avian hosts. For the first time in the Plasmodium lineage, we find evidence of transposable elements, including several hundred fragments of LTR-retrotransposons in both species and an apparently complete LTR-retrotransposon in the genome of P. gallinaceum.


Assuntos
Malária Aviária/genética , Plasmodium falciparum/genética , Plasmodium vivax/genética , Plasmodium/genética , Animais , Aves/parasitologia , Evolução Molecular , Humanos , Malária Aviária/parasitologia , Mamíferos/parasitologia , Filogenia , Plasmodium/patogenicidade , Plasmodium falciparum/patogenicidade , Plasmodium vivax/patogenicidade
4.
Malar J ; 18(1): 82, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30876412

RESUMO

BACKGROUND: Some Plasmodium species have the ability to modify the behaviour of their mosquito vectors. This is thought to be an adaptive strategy that maximizes the parasite's transmission. METHODS: The effect of Plasmodium relictum infections on the blood feeding behaviour of Culex pipiens quinquefasciatus mosquitoes was monitored. RESULTS: Plasmodium infections did not alter the proportion of blood fed mosquitoes but they did affect the dynamics and the size of the blood meal. Sporozoite-infected mosquitoes completed their blood meal 1.3 times later than uninfected mosquitoes and ended up with smaller blood meals. CONCLUSION: The potential adaptive nature of this manipulation of mosquito behaviour is discussed in the light of previous studies on other malaria models.


Assuntos
Culex/fisiologia , Culex/parasitologia , Comportamento Alimentar , Plasmodium/crescimento & desenvolvimento , Animais , Feminino , Tempo
5.
PLoS Pathog ; 10(9): e1004308, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25210974

RESUMO

Malaria parasites have been shown to adjust their life history traits to changing environmental conditions. Parasite relapses and recrudescences--marked increases in blood parasite numbers following a period when the parasite was either absent or present at very low levels in the blood, respectively--are expected to be part of such adaptive plastic strategies. Here, we first present a theoretical model that analyses the evolution of transmission strategies in fluctuating seasonal environments and we show that relapses may be adaptive if they are concomitant with the presence of mosquitoes in the vicinity of the host. We then experimentally test the hypothesis that Plasmodium parasites can respond to the presence of vectors. For this purpose, we repeatedly exposed birds infected by the avian malaria parasite Plasmodium relictum to the bites of uninfected females of its natural vector, the mosquito Culex pipiens, at three different stages of the infection: acute (∼ 34 days post infection), early chronic (∼ 122 dpi) and late chronic (∼ 291 dpi). We show that: (i) mosquito-exposed birds have significantly higher blood parasitaemia than control unexposed birds during the chronic stages of the infection and that (ii) this translates into significantly higher infection prevalence in the mosquito. Our results demonstrate the ability of Plasmodium relictum to maximize their transmission by adopting plastic life history strategies in response to the availability of insect vectors.


Assuntos
Evolução Biológica , Aves/parasitologia , Culex/patogenicidade , Culicidae/parasitologia , Malária Aviária/transmissão , Plasmodium/fisiologia , Animais , Feminino , Interações Hospedeiro-Parasita , Insetos Vetores , Filogenia
6.
Malar J ; 14: 383, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26424326

RESUMO

BACKGROUND: The immune system of many insects wanes dramatically with age, leading to the general prediction that older insects should be more susceptible to infection than their younger counterparts. This prediction is however challenged by numerous studies showing that older insects are more resistant to a range of pathogens. The effect of age on susceptibility to infections is particularly relevant for mosquitoes given their role as vectors of malaria and other diseases. Despite this, the effect of mosquito age on Plasmodium susceptibility has been rarely explored, either experimentally or theoretically. METHODS: Experiments were carried out using the avian malaria parasite Plasmodium relictum and its natural vector in the field, the mosquito Culex pipiens. Both innate immune responses (number and type of circulating haemocytes) and Plasmodium susceptibility (prevalence and burden) were quantified in seven- and 17-day old females. Whether immunity or Plasmodium susceptibility are modulated by the previous blood feeding history of the mosquito was also investigated. To ensure repeatability, two different experimental blocks were carried out several weeks apart. RESULTS: Haemocyte numbers decrease drastically as the mosquitoes age. Despite this, older mosquitoes are significantly more resistant to a Plasmodium infection than their younger counterparts. Crucially, however, the age effect is entirely reversed when old mosquitoes have taken one previous non-infected blood meal. CONCLUSIONS: The results agree with previous studies showing that older insects are often more resistant to infections than younger ones. These results suggest that structural and functional alterations in mosquito physiology with age may be more important than immunity in determining the probability of a Plasmodium infection in old mosquitoes. Possible explanations for why the effect is reversed in blood-fed mosquitoes are discussed. The reversal of the age effect in blood fed mosquitoes implies that age is unlikely to have a significant impact on mosquito susceptibility in the field.


Assuntos
Envelhecimento/imunologia , Culex/fisiologia , Culex/parasitologia , Insetos Vetores/fisiologia , Insetos Vetores/parasitologia , Malária Aviária/parasitologia , Malária Aviária/transmissão , Animais , Canários/parasitologia , Culex/imunologia , Comportamento Alimentar , Hemolinfa/imunologia , Hemolinfa/parasitologia , Insetos Vetores/imunologia , Prevalência
7.
PLoS Pathog ; 8(11): e1003007, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23209403

RESUMO

A growing body of evidence points towards epigenetic mechanisms being responsible for a wide range of biological phenomena, from the plasticity of plant growth and development to the nutritional control of caste determination in honeybees and the etiology of human disease (e.g., cancer). With the (partial) elucidation of the molecular basis of epigenetic variation and the heritability of certain of these changes, the field of evolutionary epigenetics is flourishing. Despite this, the role of epigenetics in shaping host-pathogen interactions has received comparatively little attention. Yet there is plenty of evidence supporting the implication of epigenetic mechanisms in the modulation of the biological interaction between hosts and pathogens. The phenotypic plasticity of many key parasite life-history traits appears to be under epigenetic control. Moreover, pathogen-induced effects in host phenotype may have transgenerational consequences, and the bases of these changes and their heritability probably have an epigenetic component. The significance of epigenetic modifications may, however, go beyond providing a mechanistic basis for host and pathogen plasticity. Epigenetic epidemiology has recently emerged as a promising area for future research on infectious diseases. In addition, the incorporation of epigenetic inheritance and epigenetic plasticity mechanisms to evolutionary models and empirical studies of host-pathogen interactions will provide new insights into the evolution and coevolution of these associations. Here, we review the evidence available for the role epigenetics on host-pathogen interactions, and the utility and versatility of the epigenetic technologies available that can be cross-applied to host-pathogen studies. We conclude with recommendations and directions for future research on the burgeoning field of epigenetics as applied to host-pathogen interactions.


Assuntos
Epigênese Genética , Interações Hospedeiro-Patógeno , Locos de Características Quantitativas , Animais , Humanos
8.
Vet Sci ; 11(7)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39057971

RESUMO

The mortality of birds resulting from collisions and electrocutions with overhead lines, such as power lines and phone lines, among others, has been implicated in the decline of various avian species globally. Specifically, overhead line collisions pose a significant threat to the conservation of the Canarian houbara bustard (Chlamydotis undulata fuertaventurae), an endangered subspecies endemic to the Canary Islands. This study centers on the postmortem findings of Canarian houbara bustards that have collided with overhead lines, providing insights into the post-collision outcomes for these birds. A complete standardized necropsy of nine Canarian houbara bustards revealed that trauma was the cause of death in all cases. The most notable gross lesions associated with trauma included bone fractures, soft tissue lacerations, hemorrhages, luxations, and hemocoelom. The inguinal area, chest, and wings were the body regions more frequently affected. A histopathology, immunohistochemistry, and entomology analysis confirmed that numerous birds survived the initial trauma. We concluded that when a houbara bustard collides with an overhead line, it frequently survives the initial trauma, with a survival time ranging from minutes to hours. The histopathology, immunohistochemistry, or entomologic analysis may be helpful to approximate the timing interval between trauma and death.

9.
Front Vet Sci ; 11: 1395928, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39144076

RESUMO

Samples from the mesenteric lymph nodes (MS LNs) and ileocecal valves (ICV) of 105 goats, comprising 61 non-vaccinated and 44 vaccinated against Mycobacterium avium subspecies paratuberculosis (MAP), were collected at slaughter from a farm with a confirmed history of paratuberculosis (PTB). These goats had subclinical infections. PTB-compatible lesions in the MS LNs, ICV lamina propria (LP), and Peyer's patches (PPs) were graded separately. Furthermore, the load of acid-fast bacilli was quantified using Ziehl-Neelsen staining (ZN), MAP antigens by immunohistochemistry (IHC), and MAP DNA by PCR targeting the IS900 sequence. Gross PTB-compatible lesions were found in 39% of the goats, with 31.72% vaccinated (V) and 68.29% non-vaccinated (nV). Histopathological lesions induced MAP were observed in 58% of the animals, with 36.07% vaccinated and 63.93% non-vaccinated. The inclusion of histopathology as a diagnostic tool led to a 28% increase in diagnosed cases in MS LNs and 86.05% in ICV. Grade IV granulomas with central mineralization and necrosis were the most common lesions in MS LNs. In the ICV, mild granulomatous enteritis with multifocal foci of epithelioid macrophages was predominant, occurring more frequently in the PPs than in the LP. Furthermore, statistical differences in the presence of histopathological lesions between vaccinated and non-vaccinated goats were noted in MS LNs, ICV LPs, and ICV PPs. Non-vaccinated animals showed higher positivity rates in ZN, IHC, and PCR tests, underscoring the benefits of anti-MAP vaccination in reducing PTB lesions and bacterial load in target organs. Our findings emphasize the necessity of integrating gross and histopathological assessments with various laboratory techniques for accurate morphological and etiological diagnosis of PTB in both vaccinated and non-vaccinated goats with subclinical disease. However, further studies are required to refine sampling protocols for subclinical PTB in goats to enhance the consistency of diagnostic tools.

10.
Ecol Lett ; 16(3): 323-9, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23205903

RESUMO

The epidemiology of vector-borne pathogens is largely determined by the host-choice behaviour of their vectors. Here, we investigate whether a Plasmodium infection renders the host more attractive to host-seeking mosquitoes. For this purpose, we work on a novel experimental system: the avian malaria parasite Plasmodium relictum, and its natural vector, the mosquito Culex pipiens. We provide uninfected mosquitoes with a choice between an uninfected bird and a bird undergoing either an acute or a chronic Plasmodium infection. Mosquito choice is assessed by microsatellite typing of the ingested blood. We show that chronically infected birds attract significantly more vectors than either uninfected or acutely infected birds. Our results suggest that malaria parasites manipulate the behaviour of uninfected vectors to increase their transmission. We discuss the underlying mechanisms driving this behavioural manipulation, as well as the broader implications of these effects for the epidemiology of malaria.


Assuntos
Canários/parasitologia , Culicidae/parasitologia , Interações Hospedeiro-Parasita , Malária/transmissão , Plasmodium/fisiologia , Animais , Comportamento Alimentar , Feminino
11.
Malar J ; 12: 179, 2013 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-23731595

RESUMO

BACKGROUND: The biting behaviour of mosquitoes is crucial for the transmission of malaria parasites. This study focuses on the feeding behaviour of Culex pipiens mosquitoes with regard to the infection status by the avian malaria parasite Plasmodium relictum (lineage SGS1). METHODS: Uninfected and sporozoite-infected mosquitoes were provided with a choice between an uninfected bird and a bird undergoing a chronic P. relictum infection. Mosquito choice is assessed by microsatellite typing of the ingested blood. RESULTS: Chronically infected birds are more attractive to mosquitoes. This choice is not altered by the infection status of the mosquitoes: both infected and uninfected mosquitoes have similar host choice behaviours and are more attracted towards infected birds. CONCLUSIONS: These results support some, but not all predictions derived from the hypothesis that malaria parasites can manipulate the behaviour of their mosquito vectors to enhance their transmission. The possible mechanisms driving this manipulation, the evolutionary dynamics leading to the modification of the biting behaviour of mosquitoes by Plasmodium sp. as well as the implications for malaria epidemiology are discussed.


Assuntos
Culex/fisiologia , Culex/parasitologia , Comportamento Alimentar , Plasmodium/isolamento & purificação , Animais , Aves , Culex/classificação , Culex/genética , Feminino , Genótipo , Repetições de Microssatélites
12.
Trop Med Infect Dis ; 8(5)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37235320

RESUMO

Panstrongylus is a Neotropical taxa of 16 species, some more widespread than others, that act as vectors of Trypanosoma cruzi, the etiologic agent of Chagas disease (CD). This group is associated with mammalian reservoir niches. There are few studies of the biogeography and niche suitability of these triatomines. Using zoo-epidemiological occurrence databases, the distribution of Panstrongylus was determined based on bioclimatic modelling (DIVA GIS), parsimonious niche distribution (MAXENT), and parsimony analysis of endemic species (PAE). Through 517 records, a wide presence of P. geniculatus, P. rufotuberculatus, P. lignarius, and P. megistus was determined and recorded as frequent vectors of T. cruzi in rainforest habitats of 24-30 °C. These distributions were modeled with AUC >0.80 and <0.90, as well as with the seasonality of temperature, isothermality, and precipitation as relevant bioclimatic variables. Individual traces for each taxon in Panstrongylus-1036 records-showed widely dispersed lines for frequent vectors P. geniculatus, P. lignarius, P. rufotuberculatus, and P. megistus. Other occasional vectors showed more restricted dispersal, such as P. howardi, P. humeralis, P. lenti, P. lutzi, P. tupynambai, P. noireaiui, and P. chinai. Areas of defined environmental variation, geological change, and trans domain fluid fauna, such as the American Transition Zone and the Pacific Domain of Morrone, had the highest Panstrongylus diversity. Pan-biogeographic nodes appear to be areas of the greatest species diversity that act as corridors connecting biotopes and allowing fauna migration. Vicariance events in the geologic history of the continent need to be investigated. The geographical distribution of Panstrongylus overlapped with CD cases and Didelphis marsupialis/Dasypus novemcinctus presence, two important reservoirs in Central and South America. The information derived from the distribution of Panstrongylus provides knowledge for surveillance and vector control programs. It would increase information on the most and less relevant vector species of this zoonotic agent, for monitoring their population behavior.

13.
Front Vet Sci ; 10: 1188105, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37745220

RESUMO

Fifty-five skin lesions from 31 stranded cetaceans along the Canary coasts (2011-2021) were submitted to macroscopic, histological, and molecular analyses to confirm infection by cetacean poxvirus, herpesvirus and cetacean morbillivirus. They were macroscopically categorized into eight categories with respective subcategories according to their color, shape, size, and consistency. Cetacean poxvirus was detected in 54.54% of the skin lesions through real-time and conventional PCRs based on the DNA polymerase gene. Additionally, herpesvirus and morbillivirus were currently detected from 43.63 and 1.82% of the cutaneous lesions, respectively. Coinfection of poxvirus and herpesvirus was detected in nine of them (16.36%), which makes the present study the first to report coinfection by both pathogens in skin lesions in cetaceans. A plausible approach to histopathological characterization of poxvirus-and herpesvirus-positive skin lesions was established. Hyperkeratosis, acanthosis, ballooning degeneration, and intracytoplasmic inclusion bodies in vacuolized keratinocytes through the stratum spinosum were common findings in poxvirus skin lesions. Alphaherpesvirus was associated with a prominent acanthotic epidermis, moderate necrosis, multifocal dyskeratosis, and irregular keratinocytes with both cellular and nuclei pleomorphism. The common histopathological findings of both pathogens were observed in coinfection lesions. However, those associated with herpesvirus were considerably more remarkable. Relationships between molecular and microscopic findings were observed for the lesions that showed tattoo-like and tortuous patterns. Further multidisciplinary diagnostic studies of infected skin lesions are needed to understand the epidemiology of these emerging infectious diseases.

14.
Heliyon ; 9(11): e21318, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027611

RESUMO

The flipped learning methodology could play a key role in teacher training, as it exposes future teachers to experience this active methodology as students. With the purpose of shedding light on how students' perceptions may vary over time and how they can be related to the improvement of the flipped learning methodology, our study explores different factors in an eight-year period. Specifically, we analyse teaching performance considering data on students' perceptions from the 2015-2016 academic year to 2022-2023 of a course embedded within a master s degree in teacher training in Spain. Once future teachers had experienced flipped learning as students, a sample of 338 completed a survey regarding their perceptions of the flipped classroom approach and the instructor role. In our study, the more experienced the instructor, the better perception the students showed on both the flipped learning methodology and the performance of their teacher. In particular, we found that future teachers had (i) a good or very good opinion about flipped learning, regardless of their gender (ii) a more positive perception about flipped learning, teaching performance and course development in the last five academic years, (iii) no remarkable differences between study specialisations in those last academic years, and (iv) a better opinion about the flipped learning model when they have best grades. We discuss our findings according to six factors that affect the flipped learning experience and, thus, students' perception of flipped learning over time: "student characteristics", "teacher characteristics", "implementation", "task characteristics", "out-of-class activities" and "in-class activities"-factors already unveiled by a recent state-of-the-art review to enhance the effectiveness of flipped classroom. We can conclude that the instructor's teaching experience is a key factor that affects the implementation of flipped learning, influencing students' perception and, consequently, the success of this active methodology.

15.
Front Vet Sci ; 10: 1152920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205226

RESUMO

This study aimed to document the pathological findings observed in a common buzzard (Buteo buteo insularum) from Gran Canaria (Canary Islands, Atlantic Ocean), naturally infected with Buteo buteo herpesvirus (HV). Local authorities found the common buzzard alive, but it died after 10 days of specialized veterinary care. Postmortem investigation, including complete gross and histologic examination, immunohistochemistry, microbiology, and PCR, was performed. The animal presented necrotizing heterophilic and histiocytic bilateral conjunctivitis, stomatitis, pharyngitis, rhinitis, and sinusitis with secondary bacterial and fungal infections. Frequent eosinophilic intranuclear inclusion bodies were observed in the oral mucosa and esophagus epithelium. HV proteins and DNA were detected in tissues from this animal. The sequences obtained from the PCR product were identical to the reported sequences of Buteo buteo HV.

16.
Vet Q ; 43(1): 1-10, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37768676

RESUMO

In Chile, since January 2023, a sudden and pronounced increase in strandings and mortality has been observed among South American (SA) sea lions (Otaria flavescens), prompting significant concern. Simultaneously, an outbreak of highly pathogenic avian influenza H5N1 (HPAIV H5N1) in avian species has emerged since December 2022. To investigate the cause of this unexpected mortality, we conducted a comprehensive epidemiological and pathologic study. One hundred sixty-nine SA sea lions were sampled to ascertain their HPAIV H5N1 status, and long-term stranding trends from 2009 to 2023 were analyzed. In addition, two animals were necropsied. Remarkably, a significant surge in SA sea lion strandings was observed initiating in January 2023 and peaking in June 2023, with a count of 4,545 stranded and deceased animals. Notably, this surge in mortality correlates geographically with HPAIV outbreaks affecting wild birds. Among 168 sampled SA sea lions, 34 (20%) tested positive for Influenza A virus, and 21 confirmed for HPAIV H5N1 2.3.4.4b clade in tracheal/rectal swab pools. Clinical and pathological evaluations of the two necropsied stranded sea lions revealed prevalent neurological and respiratory signs, including disorientation, tremors, ataxia, and paralysis, as well as acute dyspnea, tachypnea, profuse nasal secretion, and abdominal breathing. The lesions identified in necropsied animals aligned with observed clinical signs. Detection of the virus via immunohistochemistry (IHC) and real-time PCR in the brain and lungs affirmed the findings. The findings provide evidence between the mass mortality occurrences in SA sea lions and HPAIV, strongly indicating a causal relationship. Further studies are needed to better understand the pathogenesis and transmission.


Assuntos
Virus da Influenza A Subtipo H5N1 , Influenza Aviária , Leões-Marinhos , Animais , Influenza Aviária/epidemiologia , Chile/epidemiologia , Surtos de Doenças/veterinária , Aves , Filogenia
17.
PLoS Pathog ; 6(8): e1001000, 2010 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-20700451

RESUMO

Many of the most dangerous human diseases are transmitted by insect vectors. After decades of repeated insecticide use, all of these vector species have demonstrated the capacity to evolve resistance to insecticides. Insecticide resistance is generally considered to undermine control of vector-transmitted diseases because it increases the number of vectors that survive the insecticide treatment. Disease control failure, however, need not follow from vector control failure. Here, we review evidence that insecticide resistance may have an impact on the quality of vectors and, specifically, on three key determinants of parasite transmission: vector longevity, competence, and behaviour. We argue that, in some instances, insecticide resistance is likely to result in a decrease in vector longevity, a decrease in infectiousness, or in a change in behaviour, all of which will reduce the vectorial capacity of the insect. If this effect is sufficiently large, the impact of insecticide resistance on disease management may not be as detrimental as previously thought. In other instances, however, insecticide resistance may have the opposite effect, increasing the insect's vectorial capacity, which may lead to a dramatic increase in the transmission of the disease and even to a higher prevalence than in the absence of insecticides. Either way-and there may be no simple generality-the consequence of the evolution of insecticide resistance for disease ecology deserves additional attention.


Assuntos
Controle de Doenças Transmissíveis/métodos , Insetos Vetores/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Animais , Doenças Transmissíveis/transmissão , Humanos , Insetos Vetores/parasitologia , Insetos Vetores/fisiologia
18.
Vet Sci ; 9(3)2022 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-35324849

RESUMO

A retrospective survey for detecting the cetacean morbillivirus (CeMV) was carried out in beaked whales (BWs) stranded in the Canary Islands (1999-2017). CeMV is responsible for causing worldwide epizootic events with the highest mass die-offs in cetaceans, although the epidemic status of the Canarian Archipelago seems to be that of an endemic situation. A total of 319 tissue samples from 55 BWs (35 Cuvier's BWs and 20 specimens belonging to the Mesoplodon genus) were subjected to the amplification of a fragment of the fusion protein (F) and/or phosphoprotein (P) genes of CeMV by means of one or more of three polymerase chain reactions (PCR). RNA integrity could not be demonstrated in samples from 11 animals. Positivity (dolphin morbillivirus strain (DMV)) was detected in the skin sample of only a subadult male Cuvier's BW stranded in 2002, being the earliest confirmed occurrence of DMV in the Cuvier's BW species. The obtained P gene sequence showed the closest relationship with other DMVs detected in a striped dolphin stranded in the Canary Islands in the same year. A phylogenetic analysis supports a previous hypothesis of a cross-species infection and the existence of the circulation of endemic DMV strains in the Atlantic Ocean similar to those later detected in the North-East Atlantic, the Mediterranean Sea and the South-West Pacific.

19.
Animals (Basel) ; 12(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35565575

RESUMO

Herpesviruses are causative agents of meningitis and encephalitis in cetaceans, which are among the main leading known natural causes of death in these species. Brain samples from 103 stranded cetaceans were retrospectively screened for the presence of herpesvirus DNA in the brain. Molecular detection of Cetacean Morbillivirus was performed in HV positive brain cases. Histopathologic evaluation of brain samples included the presence or absence of the following findings (n = 7): meningitis, perivascular cuffings, microgliosis, intranuclear inclusion bodies, malacia, neuronal necrosis and neurophagic nodules, and haemorrhages. Histological evidence of the involvement of other etiological agents led to complementary analysis. We detected the presence of alpha and gamma-HVs in 12 out of 103 (11.6%) brain samples from stranded cetaceans of five different species: one bottlenose dolphin, six striped dolphins, three Atlantic spotted dolphins, one Cuvier's beaked whale, and one common dolphin. Pathogenic factors such as viral strain, age, sex, and the presence of co-infections were analysed and correlated with the brain histopathological findings in each case. Herpesvirus was more prevalent in males, juveniles, and calves and a 41.6% incidence of co-infections in the brain was detected in our study: three with Dolphin Morbillivirus, one with Staphilococcus aureus septicaemia and one with Brucella spp.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA