Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Br J Haematol ; 204(4): 1529-1535, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38411250

RESUMO

Chronic myelomonocytic leukaemia (CMML) is a rare haematological disorder characterized by monocytosis and dysplastic changes in myeloid cell lineages. Accurate risk stratification is essential for guiding treatment decisions and assessing prognosis. This study aimed to validate the Artificial Intelligence Prognostic Scoring System for Myelodysplastic Syndromes (AIPSS-MDS) in CMML and to assess its performance compared with traditional scores using data from a Spanish registry (n = 1343) and a Taiwanese hospital (n = 75). In the Spanish cohort, the AIPSS-MDS accurately predicted overall survival (OS) and leukaemia-free survival (LFS), outperforming the Revised-IPSS score. Similarly, in the Taiwanese cohort, the AIPSS-MDS demonstrated accurate predictions for OS and LFS, showing superiority over the IPSS score and performing better than the CPSS and molecular CPSS scores in differentiating patient outcomes. The consistent performance of the AIPSS-MDS across both cohorts highlights its generalizability. Its adoption as a valuable tool for personalized treatment decision-making in CMML enables clinicians to identify high-risk patients who may benefit from different therapeutic interventions. Future studies should explore the integration of genetic information into the AIPSS-MDS to further refine risk stratification in CMML and improve patient outcomes.


Assuntos
Leucemia Mielomonocítica Crônica , Leucemia , Síndromes Mielodisplásicas , Humanos , Leucemia Mielomonocítica Crônica/diagnóstico , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Prognóstico , Inteligência Artificial , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/tratamento farmacológico , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA