RESUMO
Biochar is a promising solution to alleviate the negative impacts of salinity stress on agricultural production. Biochar derived from food waste effect was investigated on three plant species, Medicago sativa, Amaranthus caudatus, and Zea mays, under saline environments. The results showed that biochar improved significantly the height by 30%, fresh weight of shoot by 35% and root by 45% of all three species compared to control (saline soil without biochar adding), as well as enhanced their photosynthetic pigments and enzyme activities in soil. This positive effect varied significantly between the 3 plants highlighting the importance of the plant-biochar interactions. Thus, the application of biochar is a promising solution to enhance the growth, root morphology, and physiological characteristics of plants under salt-induced stress.
Assuntos
Amaranthus , Carvão Vegetal , Medicago sativa , Solo , Zea mays , Amaranthus/efeitos dos fármacos , Amaranthus/crescimento & desenvolvimento , Amaranthus/fisiologia , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/fisiologia , Medicago sativa/efeitos dos fármacos , Medicago sativa/crescimento & desenvolvimento , Medicago sativa/fisiologia , Solo/química , Salinidade , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Fotossíntese/efeitos dos fármacosRESUMO
Biochar (BC) is an organic compound formed by the pyrolysis of organic wastes. Application of BCs as soil amendments has many benefits including carbon sequestration, enhanced soil fertility and sustainable agriculture production. In the present study, we acidified the different BCs prepared from rice straw, rice husk, wheat straw, cotton stalk, poultry manure, sugarcane press mud and vegetable waste; following which, we applied them in a series of pot experiments. Comparisons were made between acidified and non- acidified BCs for their effects on seed germination, soil properties (EC, pH) nutrient contents (P, K, Na) and organic matter. The treatments comprised of a control, and all above-described BCs (acidified as well as non-acidified) applied to soil at the rate of 1% (w/w). The maize crop was selected as a test crop. The results showed that acidified poultry manure BC significantly improved germination percentage, shoot length, and biomass of maize seedlings as compared to other BCs and their respective control plants. However, acidified BCs caused a significant decrease in nutrient contents (P, K, Na) of soil,maize seedlings, and the soil organic matter contents as compared to non- acidified BCs. But when compared with control treatments, all BCs treatments (acidified and non-acidified) delivered higher levels of nutrients and organic matter contents. It was concluded that none of the BCs (acidified and non-acidified) had caused negative effect on soil conditions and growth of maize. In addition, the acidification of BC prior to its application to alkaline soils might had altered soil chemistry and delivered better maize growth. Moving forward, more research is needed to understand the long-term effects of modified BCs on nutrient dynamics in different soils. In addition, the possible effects of BC application timings, application rates, particle size, and crop species have to be evaluated systemtically.
Assuntos
Carvão Vegetal , Germinação , Solo , Zea mays , Zea mays/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Zea mays/metabolismo , Carvão Vegetal/química , Carvão Vegetal/farmacologia , Solo/química , Germinação/efeitos dos fármacos , Nutrientes/metabolismo , Esterco , Agricultura/métodos , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacosRESUMO
Drought poses a significant ecological threat that limits the production of crops worldwide. The objective of this study to examine the impact of soil applied biochar (BC) and peatmoss (PM) on the morpho-biochemical and quality traits of tobacco plants under drought conditions. In the present experiment work, a pot trial was conducted with two levels of drought severity (~ well-watered 75 ± 5% field capacity) and severe drought stress (~ 35 ± 5% field capacity), two levels of peatmoss (PM) @ 5% [PM+ (with peatmoss) and PM- (without peatmoss)] and three levels of rice straw biochar (BC0 = no biochar; BC1 = 150 mg kg- 1; and BC2 = 300 mg kg- 1 of soil) in tobacco plants. The results indicate that drought conditions significantly impacted the performance of tobacco plants. However, the combined approach of BC and PM significantly improved the growth, biomass, and total chlorophyll content (27.94%) and carotenoids (32.00%) of tobacco. This study further revealed that the drought conditions decreased the production of lipid peroxidation and proline accumulation. But the synergistic approach of BC and PM application increased soluble sugars (17.63 and 12.20%), soluble protein (31.16 and 15.88%), decreased the proline accumulation (13.92 and 9.03%), and MDA content (16.40 and 8.62%) under control and drought stressed conditions, respectively. Furthermore, the combined approach of BC and PM also improved the leaf potassium content (19.02%) by limiting the chloride ions (33.33%) under drought stressed conditions. Altogether, the balanced application of PM and BC has significant potential as an effective approach and sustainable method to increase the tolerance of tobacco plants subjected to drought conditions. This research uniquely highlights the combined potential of PM and BC as an eco-friendly strategy to enhance plant resilience under drought conditions, offering new insights into sustainable agricultural practices.
Assuntos
Carvão Vegetal , Nicotiana , Sphagnopsida , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia , Fotossíntese , Espécies Reativas de Oxigênio , Metabolismo dos Lipídeos , Folhas de Planta , Análise de Componente Principal , Secas , ÁguaRESUMO
Gladiolus, a widely cultivated cut flower known for its aesthetically pleasing multicoloured spikes, has earned significant commercial popularity. A comprehensive understanding of the rhizosphere bacterial community associated with gladiolus is imperative for revealing its potential benefits. Molecular characterization is considered an effective method to gain insights into the structural and functional aspects of microbial populations. The soil characteristics and bacterial communities in the rhizosphere are typically influenced by quorum sensing (QS) and quorum quenching (QQ) mechanisms. This study aims to explore the niceties and diversity of rhizospheric bacterial populations linked with gladiolus corms, with a specific focus on understanding the dynamics of QS and QQ mechanisms in their complex interactions. The isolation of bacterial strains was achieved through the serial dilution method on nutrient agar (NA) media. The identification of the isolates was accomplished by amplifying 16 S rRNA gene sequences via polymerase chain reaction (PCR) via the use of universal primers. Sequence analysis was conducted via BLAST on the National Center for Biotechnology Information (NCBI) database. The characteristics of the isolated bacteria were elucidated via biosensors. This study identified three QS strains and five QQ strains. A consortium of quenchers was formulated utilizing five strains that demonstrated efficacy in mitigating the impact of disease on gladiolus and fostering growth. Among the three treatments-Scale, Descale, and Descale and Cut Half (DSC)-the DSC treatment emerged as the most effective. This treatment exhibited a broader range of variation in biological parameters over time, aligning with prevailing trends in the local market.
Assuntos
Percepção de Quorum , Rizosfera , Microbiologia do Solo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Microbiota , RNA Ribossômico 16S/genética , Iridaceae/fisiologia , Iridaceae/genéticaRESUMO
Soil salinity is a significant challenge in agriculture, particularly in arid and semi-arid regions such as Pakistan, leading to soil degradation and reduced crop yields. The present study assessed the impact of different salinity levels (0, 25, and 50 mmol NaCl) and biochar treatments (control, wheat-straw biochar, rice-husk biochar, and sawdust biochar applied @ 1% w/w) on the germination and growth performance of wheat. Two experiments: a germination study and a pot experiment (grown up to maturity), were performed. The results showed that NaCl-stress negatively impacted the germination parameters, grain, and straw yield, and agronomic and soil parameters. Biochar treatments restored these parameters compared to control (no biochar), but the effects were inconsistent across NaCl levels. Among the different biochars, wheat-straw biochar performed better than rice-husk and sawdust-derived biochar regarding germination and agronomic parameters. Biochar application notably increased soil pHs and electrical conductivity (ECe). Imposing NaCl stress reduced K concentrations in the wheat shoot and grains with concomitant higher Na concentrations in both parts. Parameters like foliar chlorophyll content (a, b, and total), stomatal and sub-stomatal conductance, and transpiration rate were also positively influenced by biochar addition. The study confirmed that biochar, particularly wheat-straw biochar, effectively mitigated the adverse effects of soil salinity, enhancing both soil quality and wheat growth. The study highlighted that biochar application can minimize the negative effects of salinity stress on wheat. Specifically, the types and dosages of biochar have to be optimized for different salinity levels under field conditions.
Assuntos
Carvão Vegetal , Clorofila , Germinação , Potássio , Estresse Salino , Sódio , Triticum , Triticum/crescimento & desenvolvimento , Triticum/metabolismo , Triticum/efeitos dos fármacos , Triticum/fisiologia , Germinação/efeitos dos fármacos , Carvão Vegetal/farmacologia , Clorofila/metabolismo , Potássio/metabolismo , Sódio/metabolismo , Sementes/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/metabolismo , Solo/química , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/efeitos dos fármacos , Grão Comestível/metabolismo , Paquistão , SalinidadeRESUMO
Early blight (EB), caused by Alternaria solani, is a serious problem in tomato production. Plant growth-promoting rhizobacteria promote plant growth and inhibit plant disease. The present study explored the bio-efficacy of synergistic effect of rhizobacterial isolates and ginger powder extract (GPE) against tomato EB disease, singly and in combination. Six fungal isolates from symptomatic tomato plants were identified as A. solani on the basis of morphological features i.e., horizontal septation (6.96 to 7.93 µm), vertical septation (1.50 to 2.22 µm), conidia length (174.2 to 187.6 µm), conidial width (14.09 to 16.52 µm), beak length (93.06 to 102.26 µm), and sporulation. Five of the twenty-three bacterial isolates recovered from tomato rhizosphere soil were nonpathogenic to tomato seedlings and were compatible with each other and with GPE. Out of five isolates tested individually, three isolates (St-149D, Hyd-13Z, and Gb-T23) showed maximum inhibition (56.3%, 48.3%, and 42.0% respectively) against mycelial growth of A. solani. Among combinations, St-149D + GPE had the highest mycelial growth inhibition (76.9%) over the untreated control. Bacterial strains molecularly characterized as Pseudomonas putida, Bacillus subtilis, and Bacillus cereus and were further tested in pot trials through seed bacterization for disease control. Seeds treated with bacterial consortia + GPE had the highest disease suppression percentage (78.1%), followed by St-149D + GPE (72.2%) and Hyd-13Z + GPE (67.5%). Maximum seed germination was obtained in the bacterial consortia + GPE (95.0 ± 2.04) followed by St-149D + GPE (92.5 ± 1.44) and Hyd-13Z + GPE (90.0 ± 2.04) over control (73.8 ± 2.39) and chemical control as standard treatment (90.0 ± 2). Ginger powder extracts also induce the activation of defence-related enzymes (TPC, PO, PPO, PAL, and CAT) activity in tomato plants. These were highly significant in the testing bacterial inoculants against A. solani infection in tomato crops.
Assuntos
Inoculantes Agrícolas , Extratos Vegetais , Solanum lycopersicum , Zingiber officinale , Animais , Pós , Alternaria , Bactérias , Doenças das Plantas/microbiologiaRESUMO
BACKGROUND: Water stress is a major danger to crop yield, hence new approaches to strengthen plant resilience must be developed. To lessen the negative effects of water stress on wheat plants, present study was arranged to investigate the role of synergistic effects of biochar, trans-zeatin riboside (t-ZR), and Azospirillum brasilense on soil improvement and enzymatic activity in water-stressed wheat. RESULTS: In a three-replication experiment comprising of four treatments (T0: Control, T1: Drought stress (DS), T2: DS + t-ZR with biochar, T3: DS + A. brasilense with biochar), we observed notable improvements in soil quality and enzymatic activities in water-stressed wheat plants with the application of t-ZR and A. brasilense with biochar. In drought stress, Treatment having the application of A. brasilense with biochar performs best as compared to the other and significant increased the enzymatic activities such as peroxidase (7.36%), catalase (8.53%), superoxide dismutase (6.01%), polyphenol oxidase (14.14%), and amylase (16.36%) in wheat plants. Different enzymatic activities showed different trends of results. Soil organic C, dissolved organic C, dissolved organic N also enhanced 29.46%, 8.59%, 22.70% respectively with the application of A. brasilense with biochar under drought stress condition. CONCLUSIONS: The synergistic action of A. brasilense and biochar creates an effective microbiological environment that supports essential plant physiological processes during drought stress. This enhancement is attributed to improved soil fertility and increased organic matter content, highlighting the potential of these novel strategies in mitigating water stress effects and enhancing crop resilience.
Assuntos
Azospirillum brasilense , Carvão Vegetal , Solo , Triticum , Triticum/metabolismo , Azospirillum brasilense/fisiologia , Solo/química , Desidratação , SecasRESUMO
Creating durable and efficient multifunctional electrocatalysts capable of high current densities at low applied potentials is crucial for widespread industrial use in hydrogen production. Herein, a Co-Ni-Fe-Cu-Mo (oxy)hydroxide electrocatalyst with abundant grain boundaries on nickel foam using a scalable coating method followed by chemical precipitation is synthesized. This technique efficiently organizes hierarchical Co-Ni-Fe-Cu-Mo (oxy)hydroxide nanoparticles within ultrafine crystalline regions (<4 nm), enriched with numerous grain boundaries, enhancing catalytic site density and facilitating charge and mass transfer. The resulting catalyst, structured into nanosheets enriched with grain boundaries, exhibits superior electrocatalytic activity. It achieves a reduced overpotential of 199 mV at 10 mA cm2 current density with a Tafel slope of 48.8 mV dec1 in a 1 m KOH solution, maintaining stability over 72 h. Advanced analytical techniques reveal that incorporating high-valency copper and molybdenum elements significantly enhances lattice oxygen activation, attributed to weakened metal-oxygen bonds facilitating the lattice oxygen mechanism (LOM). Synchrotron radiation studies confirm a synergistic interaction among constituent elements. Furthermore, the developed high-entropy electrode demonstrates exceptional long-term stability under high current density in alkaline environments, showcasing the effectiveness of high-entropy strategies in advancing electrocatalytic materials for energy-related applications.
RESUMO
Crops face constant threats from insect pests, which can lead to sudden disasters and global famine. One of the most dangerous pests is the Asian citrus psyllid (ACP), which poses a significant threat to citrus plantations worldwide. Effective and adaptive management strategies to combat ACP are always in demand. Plant resistance (PR) is a key element in pest management, playing crucial roles such as deterring pests through antifeedant and repellant properties, while also attracting natural enemies of these pests. One effective and innovative approach is the use of entomopathogenic fungi (EPF) to reduce pest populations. Additionally, other natural enemies play an important role in controlling certain insect pests. Given the significance of PR, EPF, and natural arthropod enemies (NAE), this review highlights the benefits of these strategies against ACP, drawing on successful examples from recent research. Furthermore, we discuss how EPF can be effectively utilized in citrus orchards, proposing strategies to ensure its efficient use and safeguard food security in the future.
RESUMO
The conversion of CO2 into carbon-neutral fuels such as methane (CH4) through selective photoreduction is highly sought after yet remains challenging due to the slow multistep proton-electron transfer processes and the formation of various C1 intermediates. This research highlights the cooperative interaction between Fe3+ and Cu2+ ions transitioning to Fe2+ and Cu+ ions, enhancing the photocatalytic conversion of CO2 to methane. We introduce an S-scheme heterojunction photocatalyst, CuFe2O4/ZnIn2S4, which demonstrates significant efficiency in CO2 methanation under light irradiation. The CuFe2O4/ZnIn2S4 heterojunction forms an internal electric field that aids in the mobility and separation of exciton carriers under a wide solar spectrum for exceptional photocatalytic performance. Remarkably, the optimal CuFe2O4/ZnIn2S4 heterojunction system achieved an approximately 68-time increase in CO2 conversion compared with ZnIn2S4 and CuFe2O4 nanoparticles using only pure water, with nearly complete CO selectivity and yields of CH4 and CO reaching 172.5 and 202.4 µmol g-1 h-1, respectively, via a 2-electron oxygen reduction reaction (ORR) process. The optimally designed CuFe2O4/ZnIn2S4 heterojunctional system achieved approximately 96% conversion of BA and 98.5% selectivity toward benzaldehyde (BAD). Additionally, this photocatalytic system demonstrated excellent cyclic stability and practical applicability. The photogenerated electrons in the CuFe2O4 conduction band enhance the reduction of Fe3+/Cu2+ to Fe2+/Cu+, creating a microenvironment conducive to CO2 reduction to CO and CH4. Simultaneously, the appearance of holes in the ZnIn2S4 valence band facilitates water oxidation to O2. The synergistic function within the CuFe2O4/ZnIn2S4 heterojunction plays a pivotal role in facilitating charge transfer, accelerating water oxidation, and thereby enhancing CO2 reduction kinetics. This study offers valuable insights and a strategic framework for designing efficient S-scheme heterojunctions aimed at achieving carbon neutrality through solar fuel production.
RESUMO
The expansion of pluripotent stem cells (PSCs)in vitroremains a critical barrier to their use in tissue engineering and regenerative medicine. Biochemical methods for PSC expansion are known to produce heterogeneous cell populations with varying states of pluripotency and are cost-intensive, hindering their clinical translation. Engineering biomaterials to physically control PSC fate offers an alternative approach. Surface or substrate topography is a promising design parameter for engineering biomaterials. Topographical cues have been shown to elicit profound effects on stem cell differentiation and proliferation. Previous reports have shown isotropic substrate topographies to be promising in expanding PSCs. However, the optimal feature to promote PSC proliferation and the pluripotent state has not yet been determined. In this work, the MultiARChitecture (MARC) plate is developed to conduct a high-throughput analysis of topographical cues in a 96-well plate format. The MARC plate is a reproducible and customizable platform for the analysis of multiple topographical patterns and features and is compatible with both microscopic assays and molecular biology techniques. The MARC plate is used to evaluate the expression of pluripotency markersOct4, Nanog, andSox2and the differentiation markerLmnAas well as the proliferation of murine embryonic stem (mES) cells. Our systematic analyses identified three topographical patterns that maintain pluripotency in mES cells after multiple passages: 1µm pillars (1µm spacing, square arrangement), 2µm wells (c-c (x, y) = 4, 4µm), and 5µm pillars (c-c (x, y) = 7.5, 7.5µm). This study represents a step towards developing a biomaterial platform for controlled murine PSC expansion.
Assuntos
Diferenciação Celular , Proliferação de Células , Células-Tronco Pluripotentes , Animais , Camundongos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Técnicas de Cultura de Células/métodos , Ensaios de Triagem em Larga Escala/métodos , Propriedades de Superfície , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genéticaRESUMO
Schiff bases are well known and popular classes of organic compounds containing imine (R2C = NH) group that are widely used as catalysts and intermediates in numerous organic transformations. Schiff bases are medicinally very important because they exhibit antimicrobial like antibacterial, antiviral and anticancer activities. Benzofuran based Schiff bases have been found as interesting scaffolds for the synthesis and design of biologically active agents. Moreover, they possess a wide range of biological activities against fungal, bacterial, malarial, inflammatory and viral diseases. In this reviw, substituted-arylideneamino-5-(5-chlorobenzofuran-2-yl)-1,2,4-triazole-3-thiols have been synthesized by using efficient synthetic protocols. The synthesized derivatives are also evaluated against different bacterial strains.
RESUMO
Aim: The present study aimed to figure out the potential role of exosomal microRNAs, and their targeted genes in HNC detection/diagnosis.Methods: In the present study, exosomes were extracted from the serum samples of 400 HNC patients and 400 healthy controls. Exosomes were characterized using TEM, NTA, TEM-immunogold labeling and ELISA. Quantitative PCR was used to measure the expression level of exosomal miRNA-19a, miRNA-19b and targeted genes SMAD2 and SMAD4 in HNC patients and controls.Results: The deregulation of miR-19a (p < 0.01), miR-19b (p < 0.03), SMAD2 (p < 0.04) and SMAD4 (p < 0.04) was observed in HNC patients vs controls.Conclusion: ROC curve and Kaplan-Meier analysis showed the good diagnostic/prognostic value of selected exosomal microRNAs and related genes in HNC patients.
[Box: see text].
Assuntos
Biomarcadores Tumorais , Exossomos , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , MicroRNAs , Humanos , Exossomos/genética , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/sangue , Feminino , Masculino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/sangue , Neoplasias de Cabeça e Pescoço/diagnóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/genética , Prognóstico , Proteína Smad4/genética , Adulto , Estudos de Casos e Controles , Proteína Smad2/genética , Idoso , Estimativa de Kaplan-Meier , Curva ROCRESUMO
Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.
Assuntos
Recuperação e Remediação Ambiental , Mercúrio , Poluentes do Solo , Mercúrio/análise , Domínio Catalítico , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Enxofre , Íons , Nitrogênio , OxigênioRESUMO
The prevalence of inorganic pollutants in the environment, including heavy metals (HMs), necessitates a sustainable and cost-effective solution to mitigate their impacts on the environment and living organisms. The present research aimed to assess the phytoextraction capability of spinach (Spinach oleracea L.), under the combined effects of ascorbic acid (AA) and microwave (MW) irradiation amendments, cultivated using surgical processing wastewater. In a preliminary study, spinach seeds were exposed to MW radiations at 2.45â¯GHz for different durations (15, 30, 45, 60, and 90â¯seconds). Maximum germination was observed after the 30â¯seconds of radiation exposure. Healthy spinach seeds treated with MW radiations for 30â¯s were cultivated in the sand for two weeks, after which juvenile plants were transferred to a hydroponic system. Surgical industry wastewater in different concentrations (25â¯%, 50â¯%, 75â¯%, 100â¯%) and AA (10â¯mM) were provided to both MW-treated and untreated plants. The results revealed that MW-treatment significantly enhanced the plant growth, biomass, antioxidant enzyme activities and photosynthetic pigments, while untreated plants exhibited increased reactive oxygen species (ROS) and electrolyte leakage (EL) compared with their controls. The addition of AA to both MW-treated and untreated plants improved their antioxidative defense capacity under HMs-induced stress. MW-treated spinach plants, under AA application, demonstrated relatively higher concentrations and accumulation of HMs including lead (Pb), cadmium (Cd) and nickel (Ni). Specifically, MW-treated plants with AA amendment showed a significant increase in Pb concentration by 188â¯% in leaves, Cd by 98â¯%, and Ni by 102â¯% in roots. Additionally, the accumulation of Ni increased by 174â¯% in leaves, Cd by 168â¯% in roots, and Pb by 185â¯% in the stem of spinach plant tissues compared to MW-untreated plants. These findings suggested that combining AA with MW irradiation of seeds could be a beneficial strategy for increasing the phytoextraction of HMs from wastewater and improving overall plant health undergoing HMs stress.
Assuntos
Ácido Ascórbico , Biodegradação Ambiental , Metais Pesados , Micro-Ondas , Sementes , Spinacia oleracea , Spinacia oleracea/efeitos dos fármacos , Spinacia oleracea/metabolismo , Spinacia oleracea/efeitos da radiação , Spinacia oleracea/crescimento & desenvolvimento , Ácido Ascórbico/metabolismo , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Águas Residuárias/química , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Poluentes Químicos da Água , Antioxidantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Resíduos IndustriaisRESUMO
Climate change and cadmium (Cd) contamination pose severe threats to rice production and food security. Biochar (BC) has emerged as a promising soil amendment for mitigating these challenges. To investigate the BC effects on paddy soil upon GHG emissions, Cd bioavailability, and its accumulation, a meta-analysis of published data from 2000 to 2023 was performed. Data Manager 5.3 and GetData plot Digitizer software were used to obtain and process the data for selected parameters. Our results showed a significant increase of 18% in soil pH with sewage sludge BC application, while 9% increase in soil organic carbon (SOC) using bamboo chips BC. There was a significant reduction in soil bulk density (8%), but no significant effects were observed for soil porosity, except for wheat straw BC which reduced the soil porosity by 6%. Sewage sludge and bamboo chips BC significantly reduced carbon dioxide (CO2) by 7-8% while municipal biowaste reduced methane (CH4) emissions by 2%. In the case of heavy metals, sunflower seedshells-derived materials and rice husk BC significantly reduced the bioavailable Cd in paddy soils by 24% and 12%, respectively. Cd uptake by rice roots was lowered considerably by the addition of kitchen waste (22%), peanut hulls (21%), and corn cob (15%) based BC. Similarly, cotton sticks, kitchen waste, peanut hulls, and rice husk BC restricted Cd translocation from rice roots to shoots by 22%, 27%, 20%, and 19%, respectively, while sawdust and rice husk-based BC were effective for reducing Cd accumulation in rice grains by 25% and 13%. Regarding rice yield, cotton sticks-based BC significantly increased the yield by 37% in Cd-contaminated paddy soil. The meta-analysis demonstrated that BC is an effective and multi-pronged strategy for sustainable and resilient rice cultivation by lowering greenhouse gas emissions and Cd accumulation while improving yields under the increasing threat of climate change.
Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Solo , Dióxido de Carbono/análise , Esgotos , Metano , Carbono , Carvão Vegetal , Arachis , Poluentes do Solo/análiseRESUMO
Despite growing interest in soil microbial resource limitation (MRL), the impacts of clipping-and-burning on bacterial resource acquisition and its soil carbon, nitrogen, and phosphorous stoichiometry (C:N:P) remain unclear, yet are critical for nutrient cycling and SOC accumulation in vegetation restoration. We examined the soil C:N:P and eco-enzymatic stoichiometry, bacterial life-history strategies, and bacterial resource limitation under the influence of clipping-and-burning management practices: high-intensity fire (HIF), low-intensity fire (LIF), clipping-and-fire (CF), clipping (CP), and an undisturbed control (CK) in a Karst site in southwest China. The results showed that SOC, TN, and TP in HIF and LIF were significantly (p < 0.05) reduced (by 64%, 97%, and 99%) compared to CK. However, soil C:N, C:P, and N:P ratios were surprisingly higher (18.1, 56, and 3.08) in CF than in CK. The ratios of soil microbial biomass carbon (MBC) and nitrogen (MBN) were higher (4.8) under clipping. In contrast, their ratios with microbial biomass phosphorus (MBP) were observed to be higher (22.3 and 6.4) under high-intensity fire compared to CK. Moreover, results show that there is a higher percentage of species linked with oligotroph bacteria of Rickettsiales in CF treatments than CK. Soil bacterial communities in CF treatments exhibited co-limitation by C and P, whereas N limitation was more pronounced under low-intensity fire conditions. In conclusion, the evidence links MRL to soil C:N:P stoichiometry, underscoring the critical role of oligotrophic bacteria in mediating soil nutrient dynamics under clipping-and-burning disturbances. These findings improve our understanding of MRL over the Karst region under clipping-and-burning treatments, shedding light on its relationship with soil C:N:P, eco-enzymatic stoichiometry, and bacterial life-history strategies.
RESUMO
Despite the widespread usage to safeguard crops and manage pests, pesticides have detrimental effects on the environment and human health. The necessity to find sustainable agricultural techniques and meet the growing demand for food production has spurred the quest for pesticide substitutes other than traditional ones. The unique qualities of nanotechnology, including its high surface area-to-volume ratio, controlled release, and better stability, have made it a promising choice for pest management. Over the past ten years, there has been a noticeable growth in the usage of nanomaterials for pest management; however, concerns about their possible effects on the environment and human health have also surfaced. The purpose of this review paper is to give a broad overview of the worldwide trends and environmental effects of using nanomaterials in place of pesticides. The various types of nanomaterials, their characteristics, and their possible application in crop protection are covered. The limits of the current regulatory frameworks for nanomaterials in agriculture are further highlighted in this review. Additionally, it describes how standard testing procedures must be followed to assess the effects of nanomaterials on the environment and human health before their commercialization. In order to establish sustainable and secure nanotechnology-based pest control techniques, the review concludes by highlighting the significance of taking into account the possible hazards and benefits of nanomaterials for pest management and the necessity of an integrated approach. It also emphasizes the importance of more investigation into the behavior and environmental fate of nanomaterials to guarantee their safe and efficient application in agriculture.
Assuntos
Agricultura , Nanoestruturas , Praguicidas , Controle de Pragas/métodos , Nanotecnologia , Humanos , Proteção de CultivosRESUMO
Permafrost regions play an important role in global carbon and nitrogen cycling, storing enormous amounts of organic carbon and preserving a delicate balance of nutrient dynamics. However, the increasing frequency and severity of wildfires in these regions pose significant challenges to the stability of these ecosystems. This review examines the effects of fire on chemical, biological, and physical properties of permafrost regions. The physical, chemical, and pedological properties of frozen soil are impacted by fires, leading to changes in soil structure, porosity, and hydrological functioning. The combustion of organic matter during fires releases carbon and nitrogen, contributing to greenhouse gas emissions and nutrient loss. Understanding the interactions between fire severity, ecosystem processes, and the implications for permafrost regions is crucial for predicting the impacts of wildfires and developing effective strategies for ecosystem protection and agricultural productivity in frozen soils. By synthesizing available knowledge and research findings, this review enhances our understanding of fire severity's implications for permafrost ecosystems and offers insights into effective fire management strategies.
Assuntos
Ecossistema , Pergelissolo , Solo , Incêndios Florestais , Solo/química , Incêndios , Nitrogênio/análise , Carbono/análiseRESUMO
Biochar, an organic carbonaceous matter, is a unique feed additive that is now being used in aquaculture industry to formulate a cost-effective and eco-friendly diet. This experiment (in door) was conducted over course of 90 days to determine the most effective form of biochar, produced from various sources, for supplementation in Moringa oleifera seed meal-based diet. These sources were: farmyard manure biochar, parthenium biochar (PB), vegetable waste biochar, poultry waste biochar (PWB) and corncob waste biochar, added at 2 g/kg concentration to determine the effect of supplementation on the growth indices, nutrient absorption, carcass composition, haematology and mineral status of Labeo rohita (rohu) fingerlings. The research design consisted of six test diets with three replications (6 × 3) of each. Total of 270 fingerlings (6.30 ± 0.020 g) were fed at 5% body weight and 15 of them were kept in separate steel tanks. The results indicated that PWB was most effective in improving weight gain (285.58 ± 4.54%) and feed conversion ratio (1.060 ± 0.040) compared to control diet and other test diets. The same type of biochar (PWB) produced the best results for nutrient digestibility, that is, crude protein, crude fat and gross energy and carcass composition. In terms of haematology and mineral status, PWB showed the best results. In conclusion, it was found that PWB significantly enhanced (p < 0.05) L. rohita fingerling's growth, carcass composition, nutrient digestibility, haematological parameters (red blood cells, white blood cells, platelets and haemoglobin) and mineral composition (Ca, Na, P, Mg, Fe, Mn, Zn, K and Cu) whereas PB negatively affected all parameters. It is anticipated that the potential use of biochar will increase in aquaculture industry, as research on its incorporation in fish feeds is still limited.