Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 357(6): e2300525, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412454

RESUMO

Lewy body dementia (LBD) represents the second most common neurodegenerative dementia but is a quite underexplored therapeutic area. Nepflamapimod (1) is a brain-penetrant selective inhibitor of the alpha isoform of the mitogen-activated serine/threonine protein kinase (MAPK) p38α, recently repurposed for LBD due to its remarkable antineuroinflammatory properties. Neuroprotective propargylamines are another class of molecules with a therapeutical potential against LBD. Herein, we sought to combine the antineuroinflammatory core of 1 and the neuroprotective propargylamine moiety into a single molecule. Particularly, we inserted a propargylamine moiety in position 4 of the 2,6-dichlorophenyl ring of 1, generating neflamapimod-propargylamine hybrids 3 and 4. These hybrids were evaluated using several cell models, aiming to recapitulate the complexity of LBD pathology through different molecular mechanisms. The N-methyl-N-propargyl derivative 4 showed a nanomolar p38α-MAPK inhibitory activity (IC50 = 98.7 nM), which is only 2.6-fold lower compared to that of the parent compound 1, while displaying no hepato- and neurotoxicity up to 25 µM concentration. It also retained a similar immunomodulatory profile against the N9 microglial cell line. Gratifyingly, at 5 µM concentration, 4 demonstrated a neuroprotective effect against dexamethasone-induced reactive oxygen species production in neuronal cells that was higher than that of 1.


Assuntos
Indanos , Doença por Corpos de Lewy , Fármacos Neuroprotetores , Humanos , Doença por Corpos de Lewy/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/síntese química , Indanos/farmacologia , Indanos/química , Indanos/síntese química , Animais , Relação Estrutura-Atividade , Estrutura Molecular , Relação Dose-Resposta a Droga , Camundongos
2.
Bioorg Med Chem ; 91: 117419, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37487339

RESUMO

Multi-target drug discovery is one of the most active fields in the search for new drugs against Alzheimer's disease (AD). This is because the complexity of AD pathological network might be adequately tackled by multi-target-directed ligands (MTDLs) aimed at modulating simultaneously multiple targets of such a network. In a continuation of our efforts to develop MTDLs for AD, we have been focusing on the molecular hybridization of the acetylcholinesterase inhibitor tacrine with the aim of expanding its anti-AD profile. Herein, we manipulated the structure of a previously developed tacrine-quinone hybrid (1). We designed and synthesized a novel set of MTDLs (2-6) by replacing the naphthoquinone scaffold of 1 with that of 2,5,8-quinolinetrione. The most interesting hybrid 3 inhibited cholinesterase enzymes at nanomolar concentrations. In addition, 3 exerted antioxidant effects in menadione-induced oxidative stress of SH-SY5Y cells. Importantly, 3 also showed low hepatotoxicity and good anti-amyloid aggregation properties. Remarkably, we uncovered the potential of the quinolinetrione scaffold, as a novel anti-amyloid aggregation and antioxidant motif to be used in further anti-AD MTDL drug discovery endeavors.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Tacrina/farmacologia , Tacrina/química , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Ligantes , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Antioxidantes/farmacologia , Peptídeos beta-Amiloides
3.
Int J Mol Sci ; 24(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36982627

RESUMO

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/- female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/- mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/- hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.


Assuntos
Transtorno Autístico , Síndromes Epilépticas , Espasmos Infantis , Feminino , Animais , Camundongos , Espasmos Infantis/tratamento farmacológico , Síndromes Epilépticas/tratamento farmacológico , Encéfalo/metabolismo , Transtorno Autístico/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
4.
Brain ; 144(5): 1451-1466, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-33855352

RESUMO

Abnormal gut motility is a feature of several mitochondrial encephalomyopathies, and mutations in genes such as TYMP and POLG, have been linked to these rare diseases. The human genome encodes three DNA ligases, of which only one, ligase III (LIG3), has a mitochondrial splice variant and is crucial for mitochondrial health. We investigated the effect of reduced LIG3 activity and resulting mitochondrial dysfunction in seven patients from three independent families, who showed the common occurrence of gut dysmotility and neurological manifestations reminiscent of mitochondrial neurogastrointestinal encephalomyopathy. DNA from these patients was subjected to whole exome sequencing. In all patients, compound heterozygous variants in a new disease gene, LIG3, were identified. All variants were predicted to have a damaging effect on the protein. The LIG3 gene encodes the only mitochondrial DNA (mtDNA) ligase and therefore plays a pivotal role in mtDNA repair and replication. In vitro assays in patient-derived cells showed a decrease in LIG3 protein levels and ligase activity. We demonstrated that the LIG3 gene defects affect mtDNA maintenance, leading to mtDNA depletion without the accumulation of multiple deletions as observed in other mitochondrial disorders. This mitochondrial dysfunction is likely to cause the phenotypes observed in these patients. The most prominent and consistent clinical signs were severe gut dysmotility and neurological abnormalities, including leukoencephalopathy, epilepsy, migraine, stroke-like episodes, and neurogenic bladder. A decrease in the number of myenteric neurons, and increased fibrosis and elastin levels were the most prominent changes in the gut. Cytochrome c oxidase (COX) deficient fibres in skeletal muscle were also observed. Disruption of lig3 in zebrafish reproduced the brain alterations and impaired gut transit in vivo. In conclusion, we identified variants in the LIG3 gene that result in a mitochondrial disease characterized by predominant gut dysmotility, encephalopathy, and neuromuscular abnormalities.


Assuntos
DNA Ligase Dependente de ATP/genética , Gastroenteropatias/genética , Motilidade Gastrointestinal/genética , Encefalomiopatias Mitocondriais/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , Animais , Feminino , Gastroenteropatias/patologia , Humanos , Masculino , Encefalomiopatias Mitocondriais/patologia , Mutação , Linhagem , Peixe-Zebra
5.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499464

RESUMO

Astaxanthin is a red orange xanthophyll carotenoid produced mainly by microalgae but which can also be chemically synthesized. As demonstrated by several studies, this lipophilic molecule is endowed with potent antioxidant properties and is able to modulate biological functions. Unlike synthetic astaxanthin, natural astaxanthin (NAst) is considered safe for human nutrition, and its production is considered eco-friendly. The antioxidant activity of astaxanthin depends on its bioavailability, which, in turn, is related to its hydrophobicity. In this study, we analyzed the water-solubility of NAst and assessed its protective effect against oxidative stress by means of different approaches using a neuroblastoma cell model. Moreover, due to its highly lipophilic nature, astaxanthin is particularly protective against lipid peroxidation; therefore, the role of NAst in counteracting ferroptosis was investigated. This recently discovered process of programmed cell death is indeed characterized by iron-dependent lipid peroxidation and seems to be linked to the onset and development of oxidative-stress-related diseases. The promising results of this study, together with the "green sources" from which astaxanthin could derive, suggest a potential role for NAst in the prevention and co-treatment of chronic degenerative diseases by means of a sustainable approach.


Assuntos
Antioxidantes , Xantofilas , Humanos , Antioxidantes/farmacologia , Peroxidação de Lipídeos , Xantofilas/farmacologia , Morte Celular
6.
Molecules ; 27(17)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36080409

RESUMO

A series of naphthoquinones, namely, 1,4-naphthoquinone, menadione, plumbagin, juglone, naphthazarin, and lawsone, were reacted with N-acetyl-L-cysteine, and except for lawsone, which did not react, the related adducts were obtained. After the tuning of the solvent and reaction conditions, the reaction products were isolated as almost pure from the complex reaction mixture via simple filtration and were fully characterized. Therefore, the aim of this work was to evaluate whether the antitumor activity of new compounds of 1,4-naphthoquinone derivatives leads to an increase in ROS in tumor cell lines of cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), and osteosarcoma (SaOS2, U2OS) and in normal dermal fibroblast (HDFa). The MTT assay was used to assay cell viability, the DCF-DA fluorescent probe to evaluate ROS induction, and cell-cycle analysis to measure the antiproliferative effect. Compounds 8, 9, and 12 showed a certain degree of cytotoxicity towards all the malignant cell lines tested, while compound 11 showed biological activity at higher IC50 values. Compounds 8 and 11 induced increases in ROS generation after 1 h of exposure, while after 48 h of treatment, only 8 induced an increase in ROS formation in HeLa cells. Cell-cycle analysis showed that compound 8 caused an increase in the number of G0/G1-phase cells in the HeLa experiment, while for the U2OS and SH-SY5Y cell lines, it led to an accumulation of S-phase cells. Therefore, these novel 1,4-naphthoquinone derivatives may be useful as antitumoral agents in the treatment of different cancers.


Assuntos
Naftoquinonas , Neuroblastoma , Acetilcisteína/farmacologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio/metabolismo
7.
Phytother Res ; 35(4): 2145-2156, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33295076

RESUMO

Ellagitannins may have a beneficial impact in cardiovascular diseases. The aim of the study was to evaluate the effect of high-fat diet (HFD) and the efficacy of Castanea sativa Mill. bark extract (ENC) on cardiac and vascular parameters. Rats were fed with regular diet, (RD, n = 15), HFD (n = 15), RD + ENC (20 mg/kg/day by gavage, n = 15), and HFD + ENC (same dose, n = 15) and the effects on body weight, biochemical serum parameters, and inflammatory cytokines determined. Cardiac functional parameters and aorta contractility were also assessed on isolated atria and aorta. Results showed that ENC reduced weight gain and serum lipids induced by HFD. In in vitro assays, HFD decreased the contraction force of left atrium, increased right atrium chronotropy, and decreased aorta K+ -induced contraction; ENC induced transient positive inotropic and negative chronotropic effects on isolated atria from RD and HFD rats and a spasmolytic effect on aorta. In ex vivo experiments, ENC reverted inotropic and chronotropic changes induced by HFD and enhanced Nifedipine effect more on aorta than on heart. In conclusion, ENC restores metabolic dysfunction and cardiac cholinergic muscarinic receptor function, and exerts spasmolytic effect on aorta in HFD rats, highlighting its potential as nutraceutical tool in obesity.


Assuntos
Doenças Cardiovasculares/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Casca de Planta/química , Extratos Vegetais/química , Taninos/química , Animais , Modelos Animais de Doenças , Masculino , Ratos
8.
Molecules ; 26(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513825

RESUMO

The roots of two cultivars of Paeonia, namely Paeonia officinalis "Rubra Plena" and Paeonia "Pink Hawaiian Coral", have been extracted with chloroform. The composition of the lipid fraction, analyzed by GC-MS technique, revealed the absence of paeonol and the presence of phenol, benzoic acid, fatty acid-and some sterol-derivatives. The chloroformic extracts have been tested on normal and several cancer cell lines but showed antiproliferative activity only on the ovarian carcinoma and the osteosarcoma. The biological activity of extracts was investigated mainly by confocal microscopy, flow cytometry and quantum phase imaging. The results indicated that the root extracts induced a hyperpolarization of mitochondria and an increase in reactive oxygen species levels, without inducing cell death. These effects are associated to an increased doubling time and a retarded confluence.


Assuntos
Lipídeos/química , Lipídeos/farmacologia , Paeonia/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Ácido Benzoico/química , Ácido Benzoico/farmacologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Feminino , Havaí , Células HeLa , Humanos , Células MCF-7 , Mitocôndrias/efeitos dos fármacos , Osteossarcoma/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Fenóis/química , Fenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Esteróis/química , Esteróis/farmacologia
9.
FASEB J ; 33(10): 11284-11302, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31314595

RESUMO

Loss-of-function mutations in the SPART gene cause Troyer syndrome, a recessive form of spastic paraplegia resulting in muscle weakness, short stature, and cognitive defects. SPART encodes for Spartin, a protein linked to endosomal trafficking and mitochondrial membrane potential maintenance. Here, we identified with whole exome sequencing (WES) a novel frameshift mutation in the SPART gene in 2 brothers presenting an uncharacterized developmental delay and short stature. Functional characterization in an SH-SY5Y cell model shows that this mutation is associated with increased neurite outgrowth. These cells also show a marked decrease in mitochondrial complex I (NADH dehydrogenase) activity, coupled to decreased ATP synthesis and defective mitochondrial membrane potential. The cells also presented an increase in reactive oxygen species, extracellular pyruvate, and NADH levels, consistent with impaired complex I activity. In concordance with a severe mitochondrial failure, Spartin loss also led to an altered intracellular Ca2+ homeostasis that was restored after transient expression of wild-type Spartin. Our data provide for the first time a thorough assessment of Spartin loss effects, including impaired complex I activity coupled to increased extracellular pyruvate. In summary, through a WES study we assign a diagnosis of Troyer syndrome to otherwise undiagnosed patients, and by functional characterization we show that the novel mutation in SPART leads to a profound bioenergetic imbalance.-Diquigiovanni, C., Bergamini, C., Diaz, R., Liparulo, I., Bianco, F., Masin, L., Baldassarro, V. A., Rizzardi, N., Tranchina, A., Buscherini, F., Wischmeijer, A., Pippucci, T., Scarano, E., Cordelli, D. M., Fato, R., Seri, M., Paracchini, S., Bonora, E. A novel mutation in SPART gene causes a severe neurodevelopmental delay due to mitochondrial dysfunction with complex I impairments and altered pyruvate metabolism.


Assuntos
Proteínas de Ciclo Celular/genética , Complexo I de Transporte de Elétrons/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Piruvatos/metabolismo , Cálcio/metabolismo , Linhagem Celular , Criança , Complexo I de Transporte de Elétrons/metabolismo , Endossomos/genética , Endossomos/metabolismo , Humanos , Masculino , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , NAD/genética , NAD/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo
10.
Int J Mol Sci ; 22(1)2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-33379147

RESUMO

Mitochondrial dysfunction plays a significant role in the metabolic flexibility of cancer cells. This study aimed to investigate the metabolic alterations due to Coenzyme Q depletion in MCF-7 cells. METHOD: The Coenzyme Q depletion was induced by competitively inhibiting with 4-nitrobenzoate the coq2 enzyme, which catalyzes one of the final reactions in the biosynthetic pathway of CoQ. The bioenergetic and metabolic characteristics of control and coenzyme Q depleted cells were investigated using polarographic and spectroscopic assays. The effect of CoQ depletion on cell growth was analyzed in different metabolic conditions. RESULTS: we showed that cancer cells could cope from energetic and oxidative stress due to mitochondrial dysfunction by reshaping their metabolism. In CoQ depleted cells, the glycolysis was upregulated together with increased glucose consumption, overexpression of GLUT1 and GLUT3, as well as activation of pyruvate kinase (PK). Moreover, the lactate secretion rate was reduced, suggesting that the pyruvate flux was redirected, toward anabolic pathways. Finally, we found a different expression pattern in enzymes involved in glutamine metabolism, and TCA cycle in CoQ depleted cells in comparison to controls. CONCLUSION: This work elucidated the metabolic alterations in CoQ-depleted cells and provided an insightful understanding of cancer metabolism targeting.


Assuntos
Metabolismo Energético , Células MCF-7/metabolismo , Mitocôndrias/metabolismo , Ubiquinona/deficiência , Humanos
11.
Pathogens ; 12(7)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37513730

RESUMO

A vaginal microbiota dominated by certain Lactobacillus species may have a protective effect against Chlamydia trachomatis infection. One of the key antimicrobial compounds produced is lactic acid, which is believed to play a central role in host defense. Lactobacillus strains producing the D(-)-lactic acid isomer are known to exert stronger protection. However, the molecular mechanisms underlying this antimicrobial action are not well understood. The aim of this study was to investigate the role of D(-)-lactic acid isomer in the prevention of C. trachomatis infection in an in vitro HeLa cell model. We selected two strains of lactobacilli belonging to different species: a vaginal isolate of Lactobacillus crispatus that releases both D(-) and L(+) isomers and a strain of Lactobacillus reuteri that produces only the L(+) isomer. Initially, we demonstrated that L. crispatus was significantly more effective than L. reuteri in reducing C. trachomatis infectivity. A different pattern of histone acetylation and lactylation was observed when HeLa cells were pretreated for 24 h with supernatants of Lactobacillus crispatus or L. reuteri, resulting in different transcription of genes such as CCND1, CDKN1A, ITAG5 and HER-1. Similarly, distinct transcription patterns were found in HeLa cells treated with 10 mM D(-)- or L(+)-lactic acid isomers. Our findings suggest that D(-) lactic acid significantly affects two non-exclusive mechanisms involved in C. trachomatis infection: regulation of the cell cycle and expression of EGFR and α5ß1-integrin.

12.
J Exp Clin Cancer Res ; 42(1): 145, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301960

RESUMO

BACKGROUND: Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS: Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS: MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS: MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismo
13.
Open Biol ; 13(7): 230040, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37433330

RESUMO

Pathogenic variants in SPART cause Troyer syndrome, characterized by lower extremity spasticity and weakness, short stature and cognitive impairment, and a severe mitochondrial impairment. Herein, we report the identification of a role of Spartin in nuclear-encoded mitochondrial proteins. SPART biallelic missense variants were detected in a 5-year-old boy with short stature, developmental delay and muscle weakness with impaired walking distance. Patient-derived fibroblasts showed an altered mitochondrial network, decreased mitochondrial respiration, increased mitochondrial reactive oxygen species and altered Ca2+ versus control cells. We investigated the mitochondrial import of nuclear-encoded proteins in these fibroblasts and in another cell model carrying a SPART loss-of-function mutation. In both cell models the mitochondrial import was impaired, leading to a significant decrease in different proteins, including two key enzymes involved in CoQ10 (CoQ) synthesis, COQ7 and COQ9, with a severe reduction in CoQ content, versus control cells. CoQ supplementation restored cellular ATP levels to the same extent shown by the re-expression of wild-type SPART, suggesting CoQ treatment as a promising therapeutic approach for patients carrying mutations in SPART.


Assuntos
Disfunção Cognitiva , Ubiquinona , Masculino , Humanos , Pré-Escolar , Ubiquinona/farmacologia , Proteínas Nucleares , Metabolismo Energético , Proteínas Mitocondriais/genética
14.
Antioxidants (Basel) ; 10(6)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200321

RESUMO

Coenzyme Q10 (CoQ10) is a lipid-soluble molecule with a dual role: it transfers electrons in the mitochondrial transport chain by promoting the transmembrane potential exploited by the ATPase to synthesize ATP and, in its reduced form, is a membrane antioxidant. Since the high CoQ10 hydrophobicity hinders its bioavailability, several formulations have been developed to facilitate its cellular uptake. In this work, we studied the bioenergetic and antioxidant effects in I407 and H9c2 cells of a CoQ10 phytosome formulation (UBIQSOME®, UBQ). We investigated the cellular and mitochondrial content of CoQ10 and its redox state after incubation with UBQ. We studied different bioenergetic parameters, such as oxygen consumption, ATP content and mitochondrial potential. Moreover, we evaluated the effects of CoQ10 incubation on oxidative stress, membrane lipid peroxidation and ferroptosis and highlighted the connection between the intracellular concentration of CoQ10 and its antioxidant potency. Finally, we focused on the cellular mechanism that regulates UBQ internalization. We showed that the cell lines used in this work share the same uptake mechanism for UBQ, although the intestinal cell line was less efficient. Given the limitations of an in vitro model, the latter result supports that intestinal absorption is a critical step for the oral administration of Coenzyme Q10 formulations.

15.
ChemMedChem ; 16(1): 187-198, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-32716144

RESUMO

Thanks to the widespread use and safety profile of donepezil (1) in the treatment of Alzheimer's disease (AD), one of the most widely adopted multi-target-directed ligand (MTDL) design strategies is to modify its molecular structure by linking a second fragment carrying an additional AD-relevant biological property. Herein, supported by a proposed combination therapy of 1 and the quinone drug idebenone, we rationally designed novel 1-based MTDLs targeting Aß and oxidative pathways. By exploiting a bioisosteric replacement of the indanone core of 1 with a 1,4-naphthoquinone, we ended up with a series of highly merged derivatives, in principle devoid of the "physicochemical challenge" typical of large hybrid-based MTDLs. A preliminary investigation of their multi-target profile identified 9, which showed a potent and selective butyrylcholinesterase inhibitory activity, together with antioxidant and antiaggregating properties. In addition, it displayed a promising drug-like profile.


Assuntos
Donepezila/química , Ligantes , Fármacos Neuroprotetores/química , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Donepezila/metabolismo , Donepezila/farmacologia , Donepezila/uso terapêutico , Desenho de Fármacos , Humanos , Indanos/química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
16.
FEBS J ; 288(6): 1956-1974, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32898935

RESUMO

Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.


Assuntos
Metabolismo Energético , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquinona/análogos & derivados , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Ataxia/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Nitrobenzoatos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Ubiquinona/antagonistas & inibidores , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/metabolismo
17.
Clin Exp Hypertens ; 31(7): 560-71, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19886854

RESUMO

It has been proposed that endothelial dysfunction is due to the excessive degradation of nitric oxide (NO) by oxidative stress. The enzyme heme-oxygenase (HO) seems to exert a protective effect on oxidative stress in the vasculature, both in animal models and in humans. The objective of this study is to evaluate the effects of inhibition or activation of HO on endothelial function in mesenteric small resistance arteries of spontaneously hypertensive rats (SHR). Six SHR were treated with cobalt protoporphyrin IX 50 mg/Kg (CoPP), an activator of HO; six SHR with stannous mesoporphyrin 30 mg/Kg (SnMP), an inhibitor of HO, and six SHR with saline. As controls, six Wistar-Kyoto rats (WKY) were treated with CoPP, six WKY with SnMP, and six WKY with saline. Drugs were injected in the peritoneum once a week for 2 weeks. Systolic blood pressure (SBP) was measured (tail cuff method) before and after treatment. Mesenteric small resistance arteries were mounted on a micromyograph. Endothelial function was evaluated as a cumulative concentration-response curve to acetylcholine (ACH), before and after preincubation with N(G)-methyl-L-arginine (L-NMMA, inhibitor of NO synthase), and to bradykinin (BK). In SHR treatment with CoPP, improved ACH-and BK-induced vasodilatation (ANOVA p < 0.001) and this improvement was abolished by L-NMMA (ANOVA p < 0.001). SnMP was devoid of effects on endothelial function. In WKY, both activation and inhibition of HO did not substantially affect endothelium-mediated vasodilatation. The stimulation of HO seems to induce an improvement of endothelial dysfunction in SHR by possibly reducing oxidative stress and increasing NO availability.


Assuntos
Endotélio Vascular/enzimologia , Endotélio Vascular/fisiopatologia , Heme Oxigenase (Desciclizante)/fisiologia , Hipertensão/enzimologia , Hipertensão/fisiopatologia , Artérias Mesentéricas/enzimologia , Artérias Mesentéricas/fisiopatologia , Acetilcolina/farmacologia , Animais , Bradicinina/farmacologia , Endotélio Vascular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Heme Oxigenase (Desciclizante)/antagonistas & inibidores , Imuno-Histoquímica , Técnicas In Vitro , Artérias Mesentéricas/efeitos dos fármacos , Metaloporfirinas/farmacologia , Óxido Nítrico/fisiologia , Estresse Oxidativo , Protoporfirinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Resistência Vascular , Vasodilatação/efeitos dos fármacos , ômega-N-Metilarginina/farmacologia
18.
Clin Nucl Med ; 44(7): e435-e438, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31058692

RESUMO

F-fluorocholine (F-FCH) PET/CT is widely used to study patients affected by prostate cancer. Despite its specificity, however, F-FCH may be taken up by other neoplasms such as multiple myeloma, lymphomas, lung, bladder, and colon cancer; brain tumors; and renal and hepatocellular carcinoma. This is due to its ability to evaluate the cell proliferation, which is typical of neoplastic cells. While this behavior may be an opportunity to image more neoplasms, on the other hand it could represent a source of error in the evaluation of the images. Here we present the case of a laryngeal squamous cell carcinoma detected by F-FCH.


Assuntos
Carcinoma de Células Escamosas/diagnóstico por imagem , Neoplasias Laríngeas/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Colina/análogos & derivados , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos
19.
J Vasc Res ; 45(6): 512-20, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18451634

RESUMO

The effect of insulin on the vasoconstriction induced by norepinephrine is at present controversial. We have previously demonstrated that high-concentration insulin may induce an increased reactivity to norepinephrine in mesenteric small resistance arteries of spontaneously hypertensive rats. The aim of the present study was to evaluate the effects of low- and high-concentration insulin on the concentration-response curves to norepinephrine and acetylcholine in subcutaneous small resistance arteries of hypertensive and diabetic patients. Twelve normotensive subjects (NT), 11 patients with essential hypertension (EH), 8 patients with non-insulin-dependent diabetes mellitus (NIDDM), and 8 patients with both EH and NIDDM (EH + NIDDM) were included in the study. Subcutaneous small resistance arteries were dissected and mounted on an isometric myograph. Concentration-response curves to norepinephrine (from 10(-8) to 10(-5) mol/l) and acetylcholine (from 10(-9) to 10(-5) mol/l) were performed in the presence or absence of insulin 715 pmol/l (low concentration) and 715 nmol/l (high concentration). A significant reduction in the contractile response to norepinephrine was observed in NT after preincubation of the vessels with both low- and high-concentration insulin. No reduction was observed in NIDDM and EH + NIDDM, while a significant decrease was obtained in EH with high-concentration insulin. Moreover, a significant difference in reduction in contractile response at maximal concentration of norepinephrine in the presence of low-concentration insulin was observed in NT compared to EH (p = 0.03), NIDDM (p = 0.02), and EH + NIDDM (p = 0.05), whereas no difference was observed with high-concentration insulin. No differences in the concentration-response curves to acetylcholine before or after precontraction with either low- or high-concentration insulin were observed in any group. In conclusion, insulin at low (physiological) concentrations seems to induce a decreased reactivity to norepinephrine in subcutaneous small resistance arteries of NT, but this effect was lost in EH, NIDDM and EH + NIDDM. This effect does not seem to involve acetylcholine-stimulated nitric oxide release.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipertensão/fisiopatologia , Insulina/metabolismo , Músculo Liso Vascular/fisiopatologia , Tela Subcutânea/irrigação sanguínea , Vasoconstrição , Vasodilatação , Acetilcolina/farmacologia , Adulto , Idoso , Artérias/metabolismo , Artérias/fisiopatologia , Diabetes Mellitus Tipo 2/metabolismo , Relação Dose-Resposta a Droga , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Feminino , Humanos , Hipertensão/metabolismo , Resistência à Insulina , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Norepinefrina/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
20.
Blood Press ; 17(4): 204-11, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18802801

RESUMO

OBJECTIVE: It has been previously demonstrated that structural alterations of subcutaneous small resistance arteries of hypertensive patients, as indicated by an increased media to lumen (M/L) ratio, is the most potent predictor of cardiovascular events. The aim of the present study was to identify possible determinants of small resistance artery structure that may be evaluated with non-invasive approaches. MATERIALS AND METHODS: One hundred and ninety-nine subjects (normotensives, essential hypertensives and patients with secondary hypertension) were included in the present study. All subjects were submitted to a biopsy of subcutaneous fat from the gluteal or the anterior abdominal region. Small resistance arteries were dissected and mounted on an isometric myograph, and M/L ratio was measured. All patients underwent standard biochemical tests, clinic blood pressure measurement, standard echocardiography and 24-h ambulatory blood pressure measurement. Glomerular filtration rate (GFR) was calculated according to MDRD study formula and Cockroft's formula. RESULTS: Significant correlation was found between M/L ratio and, respectively: GFR calculated both with MDRD study formula and Cockroft-Gault formula, creatinine serum, blood urea nitrogen, glycaemia, circulating sodium, clinical pulse pressure, stroke volume to pulse pressure ratio, clinical systolic, diastolic and mean arterial pressure, daytime pulse pressure. However, in a multivariate regression analysis, only serum creatinine remained in the model, and proved to be an independent predictor of small artery structure. CONCLUSIONS: Indices of renal function and, probably, of large artery distensibility may be related to small arteries remodelling in hypertension.


Assuntos
Artérias/patologia , Hipertensão/fisiopatologia , Resistência Vascular , Abdome/irrigação sanguínea , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Glicemia/análise , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Nitrogênio da Ureia Sanguínea , Nádegas/irrigação sanguínea , Estudos de Casos e Controles , Creatinina/sangue , Ecocardiografia , Feminino , Taxa de Filtração Glomerular , Humanos , Hipertensão/patologia , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Sódio/sangue , Volume Sistólico , Gordura Subcutânea/irrigação sanguínea , Gordura Subcutânea/cirurgia , Túnica Íntima/patologia , Túnica Média/patologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA