RESUMO
In spring 2016, Greece reported an outbreak caused by a previously undescribed Salmonella enterica subsp. enterica serotype (antigenic formula 11:z41:e,n,z15) via the Epidemic Intelligence Information System for Food- and Waterborne Diseases and Zoonoses (EPIS-FWD), with epidemiological evidence for sesame products as presumptive vehicle. Subsequently, Germany, Czech Republic, Luxembourg and the United Kingdom (UK) reported infections with this novel serotype via EPIS-FWD. Concerned countries in collaboration with the European Centre for Disease Prevention and Control (ECDC) and European Food Safety Authority (EFSA) adopted a common outbreak case definition. An outbreak case was defined as a laboratory-confirmed notification of the novel Salmonella serotype. Between March 2016 and April 2017, 47 outbreak cases were notified (Greece: nâ¯=â¯22; Germany: nâ¯=â¯13; Czech Republic: nâ¯=â¯5; Luxembourg: nâ¯=â¯4; UK: nâ¯=â¯3). Whole genome sequencing revealed the very close genetic relatedness of isolates from all affected countries. Interviews focusing on sesame product consumption, suspicious food item testing and trace-back analysis following Salmonella spp. detection in food products identified a company in Greece where sesame seeds from different countries were processed. Through European collaboration, it was possible to identify and recall sesame spread as one contaminated food item serving as vehicle of infection and trace it back to its origin.
Assuntos
Surtos de Doenças/estatística & dados numéricos , Vigilância da População/métodos , Salmonella enterica/isolamento & purificação , Sesamum/microbiologia , Europa (Continente)/epidemiologia , Humanos , Intoxicação Alimentar por Salmonella/epidemiologia , Infecções por Salmonella/epidemiologia , Salmonella enterica/classificação , Salmonella enterica/genética , Sorogrupo , Sorotipagem , Sequenciamento Completo do GenomaRESUMO
EFSA Strategy 2027 outlines the need for fit-for-purpose protocols for EFSA generic scientific assessments to aid in delivering trustworthy scientific advice. This EFSA Scientific Committee guidance document helps address this need by providing a harmonised and flexible framework for developing protocols for EFSA generic assessments. The guidance replaces the 'Draft framework for protocol development for EFSA's scientific assessments' published in 2020. The two main steps in protocol development are described. The first is problem formulation, which illustrates the objectives of the assessment. Here a new approach to translating the mandated Terms of Reference into scientifically answerable assessment questions and sub-questions is proposed: the 'APRIO' paradigm (Agent, Pathway, Receptor, Intervention and Output). Owing to its cross-cutting nature, this paradigm is considered adaptable and broadly applicable within and across the various EFSA domains and, if applied using the definitions given in this guidance, is expected to help harmonise the problem formulation process and outputs and foster consistency in protocol development. APRIO may also overcome the difficulty of implementing some existing frameworks across the multiple EFSA disciplines, e.g. the PICO/PECO approach (Population, Intervention/Exposure, Comparator, Outcome). Therefore, although not mandatory, APRIO is recommended. The second step in protocol development is the specification of the evidence needs and the methods that will be applied for answering the assessment questions and sub-questions, including uncertainty analysis. Five possible approaches to answering individual (sub-)questions are outlined: using evidence from scientific literature and study reports; using data from databases other than bibliographic; using expert judgement informally collected or elicited via semi-formal or formal expert knowledge elicitation processes; using mathematical/statistical models; and - not covered in this guidance - generating empirical evidence ex novo. The guidance is complemented by a standalone 'template' for EFSA protocols that guides the users step by step through the process of planning an EFSA scientific assessment.
RESUMO
In the coming decade, Europe will dedicate billions of euros to the necessary research and innovation (R&I) to support a transition to safe and sustainable food systems. EU Agencies, individually and even more so collectively, can make a difference in supporting the European research agenda. EU Agencies are knowledge centres, bringing together know-how to inform policy makers. EU Agencies that have traditionally dealt with aspects of human health, animal health, plant health and ecosystem health in silos, now need to take a broader perspective and move towards a One Health (OH) approach. In this paper, the authors highlight the need for more transdisciplinary cooperation in support of the One Health approach, identify challenges in strengthening interagency cooperation and provide recommendations to address them. EU Agencies are natural bridges between the scientific community and policy-makers and need to dedicate time and effort in fostering this dialogue, e.g. by engaging with relevant initiatives, research projects and European Partnerships. Research generates evidence that can be used also for regulatory science, in support of policy-making. It is urgent to define transdisciplinary research needs and formulate a One Health research agenda. This would be facilitated by establishing transdisciplinary One Health Research & Innovation governance, both at national and EU levels. Ongoing large initiatives, such as the One Health European Joint Programme, have demonstrated that active dialogue with national ministries and EU agencies is beneficial for all parties. Involvement of EU Agencies in the programming of the EU Research Framework programmes is beneficial, because of their regulatory science perspective, their expertise and current or future tasks on research topics. It is timely for EU Agencies to demonstrate leadership in moving the One Health agenda forward and it is encouraging that EU Agencies have committed to establish a cross-agency task force on One Health.
RESUMO
ABSTRACT: Foodborne diseases remain a global public health challenge worldwide. The European surveillance system of multistate foodborne outbreaks integrates elements from public and animal health and the food chain for early detection, assessment, and control. This review includes descriptions of the significant outbreaks that occurred in Europe in the last decade. Their significance and relevance to public health is derived from the changes, improvements, and novelties that pushed toward building a safer food system in the European Union, certainly driven by the One Health approach. In 2011, a point source monoclonal outbreak of infections caused by Escherichia coli serotype O104:H4 in sprouted seeds resulted in hundreds of cases of hemolytic uremic syndrome and several fatalities. In 2015, a prolonged outbreak of Listeria monocytogenes infections caused by contamination of frozen corn in Europe resulted in 47 cases and nine deaths. In 2016, a persistent polyclonal outbreak of Salmonella Enteritidis was linked to the consumption of eggs and was associated with hundreds of cases. The outbreak evaluations highlight the importance of rapid sharing of data (e.g., sequencing and tracing data) and the need for harmonizing bioinformatics outputs and computational approaches to facilitate detection and investigation of foodborne illnesses. These outbreaks led to development of a legal framework for a European collaboration platform for sharing whole genome sequence data and enabled the enforcement of existing hygiene and food safety provisions and the development of new hygiene guidelines and best practices. This review also briefly touches on the new trends in information technologies that are being explored for food traceability and safety. These technologies could enhance the traceability of food throughout the supply chain and redirect the conventional tracing system toward a digitized supply chain.
Assuntos
Infecções por Escherichia coli , Doenças Transmitidas por Alimentos , Listeriose , Escherichia coli Shiga Toxigênica , Animais , Surtos de Doenças , Infecções por Escherichia coli/epidemiologia , Europa (Continente)/epidemiologia , Doenças Transmitidas por Alimentos/epidemiologia , Salmonella enteritidisRESUMO
BACKGROUND: Salmonella spp are a major cause of food-borne outbreaks in Europe. We investigated a large multi-country outbreak of Salmonella enterica serotype Enteritidis in the EU and European Economic Area (EEA). METHODS: A confirmed case was defined as a laboratory-confirmed infection with the outbreak strains of S Enteritidis based on whole-genome sequencing (WGS), occurring between May 1, 2015, and Oct 31, 2018. A probable case was defined as laboratory-confirmed infection with S Enteritidis with the multiple-locus variable-number tandem repeat analysis outbreak profile. Multi-country epidemiological, trace-back, trace-forward, and environmental investigations were done. We did a case-control study including confirmed and probable cases and controls randomly sampled from the population registry (frequency matched by age, sex, and postal code). Odds ratios (ORs) for exposure rates between cases and controls were calculated with unmatched univariable and multivariable logistic regression. FINDINGS: 18 EU and EEA countries reported 838 confirmed and 371 probable cases. 509 (42%) cases were reported in 2016, after which the number of cases steadily increased. The case-control study results showed that cases more often ate in food establishments than did controls (OR 3·4 [95% CI 1·6-7·3]), but no specific food item was identified. Recipe-based food trace-back investigations among cases who ate in food establishments identified eggs from Poland as the vehicle of infection in October, 2016. Phylogenetic analysis identified two strains of S Enteritidis in human cases that were subsequently identified in salmonella-positive eggs and primary production premises in Poland, confirming the source of the outbreak. After control measures were implemented, the number of cases decreased, but increased again in March, 2017, and the increase continued into 2018. INTERPRETATION: This outbreak highlights the public health value of multi-country sharing of epidemiological, trace-back, and microbiological data. The re-emergence of cases suggests that outbreak strains have continued to enter the food chain, although changes in strain population dynamics and fewer cases indicate that control measures had some effect. Routine use of WGS in salmonella surveillance and outbreak response promises to identify and stop outbreaks in the future. FUNDING: European Centre for Disease Prevention and Control; Directorate General for Health and Food Safety, European Commission; and National Public Health and Food Safety Institutes of the authors' countries (see Acknowledgments for full list).
Assuntos
Surtos de Doenças , Ovos/microbiologia , Estudos Epidemiológicos , Intoxicação Alimentar por Salmonella/diagnóstico , Salmonella enteritidis/isolamento & purificação , Sorogrupo , Sequenciamento Completo do Genoma , Estudos de Casos e Controles , Europa (Continente)/epidemiologia , Feminino , Humanos , Masculino , Polônia , Intoxicação Alimentar por Salmonella/epidemiologia , Intoxicação Alimentar por Salmonella/microbiologiaRESUMO
Under current European hygiene legislation, food businesses are obliged to develop and implement food safety management systems (FSMS) including prerequisite programme (PRP) activities and hazard analysis and critical control point principles. This requirement is especially challenging for small food retail establishments, where a lack of expertise and other resources may limit the development and implementation of effective FSMS. In this opinion, a simplified approach to food safety management is developed and presented based on a fundamental understanding of processing stages (flow diagram) and the activities contributing to increased occurrence of the hazards (biological, chemical (including allergens) or physical) that may occur. The need to understand and apply hazard or risk ranking within the hazard analysis is removed and control is achieved using PRP activities as recently described in the European Commission Notice 2016/C278, but with the addition of a PRP activity covering 'product information and customer awareness'. Where required, critical limits, monitoring and record keeping are also included. Examples of the simplified approach are presented for five types of retail establishments: butcher, grocery, bakery, fish and ice cream shop.
RESUMO
Hepatitis E virus (HEV) is an important infection in humans in EU/EEA countries, and over the last 10 years more than 21,000 acute clinical cases with 28 fatalities have been notified with an overall 10-fold increase in reported HEV cases; the majority (80%) of cases were reported from France, Germany and the UK. However, as infection in humans is not notifiable in all Member States, and surveillance differs between countries, the number of reported cases is not comparable and the true number of cases would probably be higher. Food-borne transmission of HEV appears to be a major route in Europe; pigs and wild boars are the main source of HEV. Outbreaks and sporadic cases have been identified in immune-competent persons as well as in recognised risk groups such as those with pre-existing liver damage, immunosuppressive illness or receiving immunosuppressive treatments. The opinion reviews current methods for the detection, identification, characterisation and tracing of HEV in food-producing animals and foods, reviews literature on HEV reservoirs and food-borne pathways, examines information on the epidemiology of HEV and its occurrence and persistence in foods, and investigates possible control measures along the food chain. Presently, the only efficient control option for HEV infection from consumption of meat, liver and products derived from animal reservoirs is sufficient heat treatment. The development of validated quantitative and qualitative detection methods, including infectivity assays and consensus molecular typing protocols, is required for the development of quantitative microbial risk assessments and efficient control measures. More research on the epidemiology and control of HEV in pig herds is required in order to minimise the proportion of pigs that remain viraemic or carry high levels of virus in intestinal contents at the time of slaughter. Consumption of raw pig, wild boar and deer meat products should be avoided.
RESUMO
BACKGROUND: Hepatitis E virus (HEV) is endemic in EU/EEA countries, but the understanding of the burden of the infection in humans is inconsistent as the disease is not under EU surveillance but subject to national policies. STUDY: Countries were asked to nominate experts and to complete a standardised questionnaire about the epidemiological situation and surveillance of HEV in their respective EU/EEA country. This study reviewed surveillance systems for human cases of HEV in EU/EEA countries and nominated experts assessed the epidemiology in particular examining the recent increase in the number of autochthonous cases. RESULTS: Surveillance systems and case definitions across EU/EEA countries were shown to be highly variable and testing algorithms were unreliable. Large increases of autochthonous cases were reported from Western EU/EEA countries with lower case numbers seen in Northern and Southern European countries. Lack of clinical awareness and variability in testing strategies might account for the observed differences in hepatitis E incidence across EU/EEA countries. Infections were predominantly caused by HEV genotype 3, the most prevalent virus type in the animal reservoirs. CONCLUSION: Discussions from the expert group supported joint working across countries to better monitor the epidemiology and possible changes in risk of virus acquisition at a European level. There was agreement to share surveillance strategies and algorithms but also importantly the collation of HEV data from human and animal populations. These data collected at a European level would serve the 'One Health' approach to better informing on human exposure to HEV.
Assuntos
Doenças Endêmicas , Hepatite/epidemiologia , Efeitos Psicossociais da Doença , Europa (Continente)/epidemiologia , HumanosRESUMO
A survey was conducted over a one-year period by means of telephone interviews with 7 991 Italian households to establish the domestic consumption of eggs, the distribution by source of supply, seasonal variations and storage and preparation methods used. Eggs are mainly purchased from large retailers (53%), followed by small retailers (25.2%), direct purchase from producers (16%), and local or itinerant markets (5.8%). It was found that 69.9% of households buy packaged eggs; 92% of households store them in the refrigerator, although this percentage varies considerably, according to the type of presentation (packaged or loose) and the number of eggs bought. Italian households mainly eat eggs cooked (48.9%), followed by partly cooked (35.0%) and raw (16.1%).