Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34266955

RESUMO

Lipids are present within the cell nucleus, where they engage with factors involved in gene regulation. Cholesterol associates with chromatin in vivo and stimulates nucleosome packing in vitro, but its effects on specific transcriptional responses are not clear. Here, we show that the lipidated Wilms tumor 1 (WT1) transcriptional corepressor, brain acid soluble protein 1 (BASP1), interacts with cholesterol in the cell nucleus through a conserved cholesterol interaction motif. We demonstrate that BASP1 directly recruits cholesterol to the promoter region of WT1 target genes. Mutation of BASP1 to ablate its interaction with cholesterol or the treatment of cells with drugs that block cholesterol biosynthesis inhibits the transcriptional repressor function of BASP1. We find that the BASP1-cholesterol interaction is required for BASP1-dependent chromatin remodeling and the direction of transcription programs that control cell differentiation. Our study uncovers a mechanism for gene-specific targeting of cholesterol where it is required to mediate transcriptional repression.


Assuntos
Colesterol/metabolismo , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Proteínas Repressoras/genética , Transcrição Gênica , Núcleo Celular/metabolismo , Regulação para Baixo , Humanos , Células K562 , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Repressoras/metabolismo
2.
Langmuir ; 39(50): 18410-18423, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38049433

RESUMO

The formation of surfaces decorated with biomacromolecules such as proteins, glycans, or nucleic acids with well-controlled orientations and densities is of critical importance for the design of in vitro models, e.g., synthetic cell membranes and interaction assays. To this effect, ligand molecules are often functionalized with an anchor that specifically binds to a surface with a high density of binding sites, providing control over the presentation of the molecules. Here, we present a method to robustly and quantitatively control the surface density of one or several types of anchor-bearing molecules by tuning the relative concentrations of target molecules and free anchors in the incubation solution. We provide a theoretical background that relates incubation concentrations to the final surface density of the molecules of interest and present effective guidelines toward optimizing incubation conditions for the quantitative control of surface densities. Focusing on the biotin anchor, a commonly used anchor for interaction studies, as a salient example, we experimentally demonstrate surface density control over a wide range of densities and target molecule sizes. Conversely, we show how the method can be adapted to quality control the purity of end-grafted biopolymers such as biotinylated glycosaminoglycans by quantifying the amount of residual free biotin reactant in the sample solution.


Assuntos
Biotina , Biotina/química , Membrana Celular , Biopolímeros
3.
Cell Rep ; 42(1): 111930, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36640356

RESUMO

Leukocyte recruitment from the vasculature into tissues is a crucial component of the immune system but is also key to inflammatory disease. Chemokines are central to this process but have yet to be therapeutically targeted during inflammation due to a lack of mechanistic understanding. Specifically, CXCL4 (Platelet Factor 4, PF4) has no established receptor that explains its function. Here, we use biophysical, in vitro, and in vivo techniques to determine the mechanism underlying CXCL4-mediated leukocyte recruitment. We demonstrate that CXCL4 binds to glycosaminoglycan (GAG) sugars on proteoglycans within the endothelial extracellular matrix, resulting in increased adhesion of leukocytes to the vasculature, increased vascular permeability, and non-specific recruitment of a range of leukocytes. Furthermore, GAG sulfation confers selectivity onto chemokine localization. These findings present mechanistic insights into chemokine biology and provide future therapeutic targets.


Assuntos
Fator Plaquetário 4 , Proteoglicanas , Fator Plaquetário 4/metabolismo , Receptores de Quimiocinas , Quimiocinas/metabolismo , Glicosaminoglicanos , Matriz Extracelular/metabolismo
4.
Sci Rep ; 12(1): 10980, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768463

RESUMO

Hyaluronan (HA) is a major component of peri- and extra-cellular matrices and plays important roles in many biological processes such as cell adhesion, proliferation and migration. The abundance, size distribution and presentation of HA dictate its biological effects and are also useful indicators of pathologies and disease progression. Methods to assess the molecular mass of free-floating HA and other glycosaminoglycans (GAGs) are well established. In many biological and technological settings, however, GAGs are displayed on surfaces, and methods to obtain the size of surface-attached GAGs are lacking. Here, we present a method to size HA that is end-attached to surfaces. The method is based on the quartz crystal microbalance with dissipation monitoring (QCM-D) and exploits that the softness and thickness of films of grafted HA increase with HA size. These two quantities are sensitively reflected by the ratio of the dissipation shift (ΔD) and the negative frequency shift (- Δf) measured by QCM-D upon the formation of HA films. Using a series of size-defined HA preparations, ranging in size from ~ 2 kDa tetrasaccharides to ~ 1 MDa polysaccharides, we establish a monotonic yet non-linear standard curve of the ΔD/ - Δf ratio as a function of HA size, which reflects the distinct conformations adopted by grafted HA chains depending on their size and surface coverage. We demonstrate that the standard curve can be used to determine the mean size of HA, as well as other GAGs, such as chondroitin sulfate and heparan sulfate, of preparations of previously unknown size in the range from 1 to 500 kDa, with a resolution of better than 10%. For polydisperse samples, our analysis shows that the process of surface-grafting preferentially selects smaller GAG chains, and thus reduces the average size of GAGs that are immobilised on surfaces comparative to the original solution sample. Our results establish a quantitative method to size HA and other GAGs grafted on surfaces, and also highlight the importance of sizing GAGs directly on surfaces. The method should be useful for the development and quality control of GAG-based surface coatings in a wide range of research areas, from molecular interaction analysis to biomaterials coatings.


Assuntos
Glicosaminoglicanos , Ácido Hialurônico , Adesão Celular , Sulfatos de Condroitina , Glicosaminoglicanos/química , Ácido Hialurônico/química , Técnicas de Microbalança de Cristal de Quartzo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA