RESUMO
Circular RNAs (circRNAs) are an intriguing class of RNA due to their covalently closed structure, high stability, and implicated roles in gene regulation. Here, we used an exome capture RNA sequencing protocol to detect and characterize circRNAs across >2,000 cancer samples. When compared against Ribo-Zero and RNase R, capture sequencing significantly enhanced the enrichment of circRNAs and preserved accurate circular-to-linear ratios. Using capture sequencing, we built the most comprehensive catalog of circRNA species to date: MiOncoCirc, the first database to be composed primarily of circRNAs directly detected in tumor tissues. Using MiOncoCirc, we identified candidate circRNAs to serve as biomarkers for prostate cancer and were able to detect circRNAs in urine. We further detected a novel class of circular transcripts, termed read-through circRNAs, that involved exons originating from different genes. MiOncoCirc will serve as a valuable resource for the development of circRNAs as diagnostic or therapeutic targets across cancer types.
Assuntos
Perfilação da Expressão Gênica/métodos , Neoplasias/genética , RNA/genética , Biomarcadores Tumorais/genética , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , MicroRNAs/genética , RNA/metabolismo , RNA Circular , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma/métodosRESUMO
Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.
Assuntos
Quinases Ciclina-Dependentes/metabolismo , Neoplasias da Próstata/patologia , Anticorpos Monoclonais/uso terapêutico , Linhagem Celular Tumoral , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Reparo do DNA , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Masculino , Mutação de Sentido Incorreto , Estadiamento de Neoplasias , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Receptor de Morte Celular Programada 1/imunologia , Próstata/diagnóstico por imagem , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/imunologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia , Tomografia Computadorizada por Raios XRESUMO
Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.
Assuntos
Estudo de Associação Genômica Ampla , Neoplasias/genética , Pseudogenes/genética , Transcriptoma , Sequência de Aminoácidos , Sequência de Bases , Neoplasias da Mama/genética , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Neoplasias da Próstata/genética , Análise de Sequência de RNARESUMO
ABTRACT: Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in hormone-receptor-driven prostate, breast, bladder and salivary-gland tumours3-8. However, it is unclear how FOXA1 alterations affect the development of cancer, and FOXA1 has previously been ascribed both tumour-suppressive9-11 and oncogenic12-14 roles. Here we assemble an aggregate cohort of 1,546 prostate cancers and show that FOXA1 alterations fall into three structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class-1 activating mutations originate in early prostate cancer without alterations in ETS or SPOP, selectively recur within the wing-2 region of the DNA-binding forkhead domain, enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen-receptor program of prostate oncogenesis. By contrast, class-2 activating mutations are acquired in metastatic prostate cancers, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity and-through TLE3 inactivation-promote metastasis driven by the WNT pathway. Finally, class-3 genomic rearrangements are enriched in metastatic prostate cancers, consist of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element-herein denoted FOXA1 mastermind (FOXMIND)-to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating oncogenesis driven by the androgen receptor, and provides mechanistic insights into how the classes of FOXA1 alteration promote the initiation and/or metastatic progression of prostate cancer. These results have direct implications for understanding the pathobiology of other hormone-receptor-driven cancers and rationalize the co-targeting of FOXA1 activity in therapeutic strategies.
Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Mutação/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Fator 3-alfa Nuclear de Hepatócito/química , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Masculino , Modelos Moleculares , Metástase Neoplásica/genética , Domínios Proteicos , Receptores Androgênicos/metabolismo , Via de Sinalização WntRESUMO
Squamoid eccrine ductal carcinoma is a rare infiltrative tumor with morphologic features intermediate between squamous cell carcinoma (SCC) and sweat gland carcinomas such as microcystic adnexal carcinoma. Although currently classified as a sweat gland carcinoma, it has been debated whether squamoid eccrine ductal carcinoma is better classified as a variant of SCC. Furthermore, therapeutic options for patients with advanced disease are lacking. Here, we describe clinicopathologic features of a cohort of 15 squamoid eccrine ductal carcinomas from 14 unique patients, with next-generation sequencing DNA profiling for 12 cases. UV signature mutations were the dominant signature in the majority of cases. TP53 mutations were the most highly recurrent specific gene alteration, followed by mutations in NOTCH genes. Recurrent mutations in driver oncogenes were not identified. By unsupervised comparison of global transcriptome profiles in squamoid eccrine ductal carcinoma (n = 7) to SCC (n = 10), porocarcinoma (n = 4), and microcystic adnexal carcinoma (n = 4), squamoid eccrine ductal carcinomas displayed an intermediate phenotype between SCC and sweat gland tumors. Squamoid eccrine ductal carcinoma displayed significantly higher expression of 364 genes (including certain eccrine markers) and significantly lower expression of 525 genes compared with other groups. Our findings support the classification of squamoid eccrine ductal carcinoma as a carcinoma with intermediate features between SCC and sweat gland carcinoma.
RESUMO
Spindle cell/sclerosing rhabdomyosarcoma is an infrequent subtype of rhabdomyosarcoma according to the World Health Organization Classification of Soft Tissue and Bone Tumours, which includes a novel category of intraosseous spindle-cell rhabdomyosarcomas (ISCRMS) with EWSR1:: or FUS::TFCP2 fusions. We report a case of ISCRMS with EWSR1::TFCP2 fusion presenting in the femur mimicking osteosarcoma in this unusual primary location. We present an 18-year-old male with relapsed widely metastatic sarcoma, morphologically identical to osteosarcoma responding poorly to chemotherapy, initially presenting in the distal femur. Sections showed a high-grade malignant neoplasm with sheets of epithelioid and spindled cells without obvious rhabdomyoblastic differentiation morphologically containing focal areas resembling new bone/osteoid formation. Molecular sequencing identified t(12;22) EWSR1::TFCP2. The tumor cells were diffusely positive for pancytokeratin, MyoD1, and ALK by retrospective immunohistochemistry. Desmin and SATB2 were focally positive. Myogenin was negative, and INI-1 expression was retained. ISCRMS commonly involves craniofacial and pelvic bones, but rarely originates in long bones, as in this case. Initially, osteosarcoma was the primary diagnostic consideration based on distal long bone location, patient age, and evidence of osteoid formation. Distinction between the two entities may be nearly impossible on morphologic grounds alone, which presents a diagnostic pitfall without molecular or extensive immunoprofiling data.
RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.
RESUMO
Primary prostate cancer (PCa) can show marked molecular heterogeneity. However, systematic analyses comparing primary PCa and matched metastases in individual patients are lacking. We aimed to address the molecular aspects of metastatic progression while accounting for the heterogeneity of primary PCa. In this pilot study, we collected 12 radical prostatectomy (RP) specimens from men who subsequently developed metastatic castration-resistant prostate cancer (mCRPC). We used histomorphology (Gleason grade, focus size, stage) and immunohistochemistry (IHC) (ERG and p53) to identify independent tumors and/or distinct subclones of primary PCa. We then compared molecular profiles of these primary PCa areas to matched metastatic samples using whole-exome sequencing (WES) and amplicon-based DNA and RNA sequencing. Based on combined pathology and molecular analysis, seven (58%) RP specimens harbored monoclonal and topographically continuous disease, albeit with some degree of intratumor heterogeneity; four (33%) specimens showed true multifocal disease; and one displayed monoclonal disease with discontinuous topography. Early (truncal) events in primary PCa included SPOP p.F133V (one patient), BRAF p.K601E (one patient), and TMPRSS2:ETS rearrangements (eight patients). Activating AR alterations were seen in nine (75%) mCRPC patients, but not in matched primary PCa. Hotspot TP53 mutations, found in metastases from three patients, were readily present in matched primary disease. Alterations in genes encoding epigenetic modifiers were observed in several patients (either shared between primary foci and metastases or in metastatic samples only). WES-based phylogenetic reconstruction and/or clonality scores were consistent with the index focus designated by pathology review in six out of nine (67%) cases. The three instances of discordance pertained to monoclonal, topographically continuous tumors, which would have been considered as unique disease in routine practice. Overall, our results emphasize pathologic and molecular heterogeneity of primary PCa, and suggest that comprehensive IHC-assisted pathology review and genomic analysis are highly concordant in nominating the 'index' primary PCa area. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Genômica , Humanos , Masculino , Proteínas Nucleares/genética , Filogenia , Projetos Piloto , Prostatectomia , Neoplasias da Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/genética , Neoplasias de Próstata Resistentes à Castração/patologia , Proteínas Repressoras/genéticaRESUMO
Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.
Assuntos
Genética Médica , Genômica , Metástase Neoplásica/genética , Adulto , Classe I de Fosfatidilinositol 3-Quinases/genética , Inibidor p16 de Quinase Dependente de Ciclina , Inibidor de Quinase Dependente de Ciclina p18/genética , Reparo do DNA/genética , Feminino , Mutação em Linhagem Germinativa/genética , Humanos , Masculino , Metástase Neoplásica/imunologia , Metástase Neoplásica/patologia , PTEN Fosfo-Hidrolase/genética , Proteínas de Ligação a Retinoblastoma/genética , Transcriptoma/genética , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/genética , Sequenciamento do ExomaRESUMO
Although squamous cell carcinomas (SCC) are the most frequent human solid tumor at many anatomic sites, the driving molecular alterations underlying their progression from precursor lesions are poorly understood, especially in the context of photodamage. Therefore, we used high-depth, targeted next-generation sequencing (NGS) of RNA and DNA from routine tissue samples to characterize the progression of both well- (cutaneous) and poorly (ocular) studied SCCs. We assessed 56 formalin-fixed paraffin-embedded (FFPE) cutaneous lesions (n = 8 actinic keratosis, n = 30 carcinoma in situ [CIS], n = 18 invasive) and 43 FFPE ocular surface lesions (n = 2 conjunctival/corneal intraepithelial neoplasia, n = 20 CIS, n = 21 invasive), from institutions in the US and Brazil. An additional seven cases of advanced cutaneous SCC were profiled by hybrid capture-based NGS of >1500 genes. The cutaneous and ocular squamous neoplasms displayed a predominance of UV-signature mutations. Precursor lesions had highly similar somatic genomic landscapes to SCCs, including chromosomal gains of 3q involving SOX2, and highly recurrent mutations and/or loss of heterozygosity events affecting tumor suppressors TP53 and CDKN2A. Additionally, we identify a novel molecular subclass of CIS with RB1 mutations. Among TP53 wild-type tumors, human papillomavirus transcript was detected in one matched pair of cutaneous CIS and SCC. Amplicon-based whole-transcriptome sequencing of select 20 cutaneous lesions demonstrated significant upregulation of pro-invasion genes in cutaneous SCCs relative to precursors, including MMP1, MMP3, MMP9, LAMC2, LGALS1, and TNFRSF12A. Together, ocular and cutaneous squamous neoplasms demonstrate similar alterations, supporting a common model for neoplasia in UV-exposed epithelia. Treatment modalities useful for cutaneous SCC may also be effective in ocular SCC given the genetic similarity between these tumor types. Importantly, in both systems, precursor lesions possess the full complement of major genetic changes seen in SCC, supporting non-genetic drivers of invasiveness.
Assuntos
Carcinoma in Situ/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias da Túnica Conjuntiva/patologia , Neoplasias Oculares/patologia , Mutação , Neoplasias Cutâneas/patologia , Pele/patologia , Idoso , Carcinoma in Situ/genética , Carcinoma de Células Escamosas/genética , Neoplasias da Túnica Conjuntiva/genética , Neoplasias Oculares/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Ceratose Actínica/genética , Ceratose Actínica/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias Cutâneas/genéticaRESUMO
Germline mutation of BRCA-associated protein-1 has been implicated in the development of tumor predisposition syndrome and high risk for malignant mesothelioma, lung adenocarcinoma, uveal melanoma, and cutaneous melanoma. Here, we present the case of a patient with recurrent metastatic melanoma who was found to have germline BAP1 and somatic BRAF mutation by clinical genomic sequencing. Detection of a germline mutation prompted screening for other cancers and surveillance in family members. Prospective integrative sequencing for pediatric cancer patients may identify pathogenic germline mutations and may improve outcomes and treatment-related morbidity by early diagnosis of malignancy.
Assuntos
Sequenciamento do Exoma/métodos , Melanoma/genética , Síndromes Neoplásicas Hereditárias/diagnóstico , Síndromes Neoplásicas Hereditárias/genética , Neoplasias Cutâneas/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Adolescente , Feminino , Testes Genéticos/métodos , Mutação em Linhagem Germinativa , Humanos , Linhagem , Melanoma Maligno CutâneoRESUMO
PURPOSE: As massively parallel sequencing is increasingly being used for clinical decision making, it has become critical to understand parameters that affect sequencing quality and to establish methods for measuring and reporting clinical sequencing standards. In this report, we propose a definition for reduced coverage regions and describe a set of standards for variant calling in clinical sequencing applications. METHODS: To enable sequencing centers to assess the regions of poor sequencing quality in their own data, we optimized and used a tool (ExCID) to identify reduced coverage loci within genes or regions of particular interest. We used this framework to examine sequencing data from 500 patients generated in 10 projects at sequencing centers in the National Human Genome Research Institute/National Cancer Institute Clinical Sequencing Exploratory Research Consortium. RESULTS: This approach identified reduced coverage regions in clinically relevant genes, including known clinically relevant loci that were uniquely missed at individual centers, in multiple centers, and in all centers. CONCLUSION: This report provides a process road map for clinical sequencing centers looking to perform similar analyses on their data.
Assuntos
Sequenciamento do Exoma/métodos , Análise de Sequência de DNA/métodos , Sequenciamento Completo do Genoma/métodos , Sequência de Bases , Mapeamento Cromossômico , Exoma , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de DNA/normas , SoftwareRESUMO
Characterization of the prostate cancer transcriptome and genome has identified chromosomal rearrangements and copy number gains and losses, including ETS gene family fusions, PTEN loss and androgen receptor (AR) amplification, which drive prostate cancer development and progression to lethal, metastatic castration-resistant prostate cancer (CRPC). However, less is known about the role of mutations. Here we sequenced the exomes of 50 lethal, heavily pre-treated metastatic CRPCs obtained at rapid autopsy (including three different foci from the same patient) and 11 treatment-naive, high-grade localized prostate cancers. We identified low overall mutation rates even in heavily treated CRPCs (2.00 per megabase) and confirmed the monoclonal origin of lethal CRPC. Integrating exome copy number analysis identified disruptions of CHD1 that define a subtype of ETS gene family fusion-negative prostate cancer. Similarly, we demonstrate that ETS2, which is deleted in approximately one-third of CRPCs (commonly through TMPRSS2:ERG fusions), is also deregulated through mutation. Furthermore, we identified recurrent mutations in multiple chromatin- and histone-modifying genes, including MLL2 (mutated in 8.6% of prostate cancers), and demonstrate interaction of the MLL complex with the AR, which is required for AR-mediated signalling. We also identified novel recurrent mutations in the AR collaborating factor FOXA1, which is mutated in 5 of 147 (3.4%) prostate cancers (both untreated localized prostate cancer and CRPC), and showed that mutated FOXA1 represses androgen signalling and increases tumour growth. Proteins that physically interact with the AR, such as the ERG gene fusion product, FOXA1, MLL2, UTX (also known as KDM6A) and ASXL1 were found to be mutated in CRPC. In summary, we describe the mutational landscape of a heavily treated metastatic cancer, identify novel mechanisms of AR signalling deregulated in prostate cancer, and prioritize candidates for future study.
Assuntos
Neoplasias da Próstata/genética , Proliferação de Células , Células Cultivadas , Fator 3-alfa Nuclear de Hepatócito/genética , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Orquiectomia , Neoplasias da Próstata/patologia , Receptores Androgênicos/metabolismo , Alinhamento de Sequência , Transdução de SinaisAssuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Escamosas/terapia , Neoplasias da Túnica Conjuntiva/terapia , Imunoterapia , Neoplasias Orbitárias/terapia , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/secundário , Neoplasias da Túnica Conjuntiva/diagnóstico por imagem , Neoplasias da Túnica Conjuntiva/patologia , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neoplasias Orbitárias/diagnóstico por imagem , Neoplasias Orbitárias/secundário , Tomografia Computadorizada por Raios XRESUMO
Solitary fibrous tumors (SFTs) of the prostate are a rare type of spindle cell neoplasm that can demonstrate either a benign or malignant phenotype. SFTs represent a clinical challenge along with other spindle cell lesions of the prostate in terms of both diagnosis and treatment. The present study shows, for the first time, that SFTs of the prostate and other organs can comprise a mixed population of fibroblast, myofibroblast, and smooth muscle cell types. The highly proliferative component demonstrated a fibroblastic phenotype that readily underwent myofibroblast differentiation on exposure to profibrotic stimuli. Consistent with other recent studies, the prostatic SFTs demonstrated NAB2-STAT6 gene fusions that were also present in the fibroblast, myofibroblast, and smooth muscle cell types of the SFT. The results of these studies suggest that benign and malignant prostatic tumors of mesenchymal origin may be distinguished at the molecular and cellular levels, and that delineation of such defining characteristics may help elucidate the etiology and prognosis of such tumors.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética , Fator de Transcrição STAT6/genética , Tumores Fibrosos Solitários/patologia , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Colágeno/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Fusão Oncogênica/metabolismo , Prognóstico , Próstata/patologia , Proteínas Repressoras/metabolismo , Fator de Transcrição STAT6/metabolismoRESUMO
Primary clear-cell adenocarcinoma of the urethra, a rare tumor that histomorphologically resembles clear-cell carcinoma of the female genital tract, occurs predominantly in women and is associated with a relatively poor prognosis. The histogenesis of this rare urethral neoplasm has not been completely resolved, but it is thought to arise from either müllerian rests or metaplastic urothelium. Herein, we present comprehensive surgical pathological and cytopathological findings from a patient with primary urethral clear-cell adenocarcinoma and describe next-generation sequencing results for this patient's unique tumor-the first such reported characterization of molecular aberrations in urethral clear-cell adenocarcinoma at the transcriptomic and genomic levels. Transcriptome analysis revealed novel gene fusion candidates, including ANKRD28-FNDC3B. Whole-exome analysis demonstrated focal copy number loss at the SMAD4 and ARID2 loci and 38 somatic mutations, including a truncating mutation in ATM and a novel nonsynonymous mutation in ALK.
Assuntos
Adenocarcinoma de Células Claras/patologia , Biomarcadores Tumorais/genética , Neoplasias Uretrais/patologia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/cirurgia , Variações do Número de Cópias de DNA , Exoma/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Mutação , Patologia Cirúrgica , Análise de Sequência de DNA , Neoplasias Uretrais/genética , Neoplasias Uretrais/cirurgiaRESUMO
IMPORTANCE: Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. OBJECTIVE: To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. DESIGN, SETTING, AND PARTICIPANTS: Single-site, observational, consecutive case series (May 2012-October 2014) involving 102 children and young adults (mean age, 10.6 years; median age, 11.5 years, range, 0-22 years) with relapsed, refractory, or rare cancer. EXPOSURES: Participants underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing and genetic counseling. Results were discussed by a precision medicine tumor board, which made recommendations to families and their physicians. MAIN OUTCOMES AND MEASURES: Proportion of patients with potentially actionable findings, results of clinical actions based on integrative clinical sequencing, and estimated proportion of patients or their families at risk of future cancer. RESULTS: Of the 104 screened patients, 102 enrolled with 91 (89%) having adequate tumor tissue to complete sequencing. Only the 91 patients were included in all calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Forty-two patients (46%) had actionable findings that changed their cancer management: 15 of 28 (54%) with hematological malignancies and 27 of 63 (43%) with solid tumors. Individualized actions were taken in 23 of the 91 (25%) based on actionable integrative clinical sequencing findings, including change in treatment for 14 patients (15%) and genetic counseling for future risk for 9 patients (10%). Nine of 91 (10%) of the personalized clinical interventions resulted in ongoing partial clinical remission of 8 to 16 months or helped sustain complete clinical remission of 6 to 21 months. All 9 patients and families with actionable incidental genetic findings agreed to genetic counseling and screening. CONCLUSIONS AND RELEVANCE: In this single-center case series involving young patients with relapsed or refractory cancer, incorporation of integrative clinical sequencing data into clinical management was feasible, revealed potentially actionable findings in 46% of patients, and was associated with change in treatment and family genetic counseling for a small proportion of patients. The lack of a control group limited assessing whether better clinical outcomes resulted from this approach than outcomes that would have occurred with standard care.
Assuntos
Aconselhamento Genético , Neoplasias/genética , Análise de Sequência de DNA/métodos , Adolescente , Criança , Pré-Escolar , Aberrações Cromossômicas , Família , Estudos de Viabilidade , Fusão Gênica , Neoplasias Hematológicas/genética , Humanos , Achados Incidentais , Lactente , Recém-Nascido , Terapia de Alvo Molecular/métodos , Recidiva Local de Neoplasia/genética , Neoplasias/terapia , Avaliação de Resultados em Cuidados de Saúde , Indução de Remissão , Adulto JovemRESUMO
PURPOSE: CDK12 inactivation in metastatic castration-resistant prostate cancer (mCRPC) may predict immunotherapy responses. This phase 2 trial evaluated the efficacy of immune checkpoint inhibitor (ICI) therapy in patients with CDK12-altered mCRPC. PATIENTS AND METHODS: Eligible patients had mCRPC with deleterious CDK12 alterations and any prior therapies except ICI. Cohort A received ipilimumab (1 mg/kg) with nivolumab (3 mg/kg) every 3 weeks for up to four cycles, followed by nivolumab 480 mg every 4 weeks. Cohort C received nivolumab alone 480 mg every 4 weeks. Patients with CDK12-altered nonprostate tumors were enrolled in cohort B and not reported. The primary endpoint was a 50% reduction in PSA (PSA50). Key secondary endpoints included PSA progression-free survival, overall survival, objective response rate, and safety. RESULTS: PSA was evaluable in 23 patients in cohort A and 14 in cohort C. Median lines of prior therapy were two in cohorts A and C, including any prior novel hormonal agent (74% and 79%) and chemotherapy (57% and 36%). The PSA50 rate was 9% [95% confidence interval (CI), 1%-28%] in cohort A with two responders; neither had microsatellite instability or a tumor mutational burden >10 mutations/megabase. No PSA50 responses occurred in cohort C. Median PSA progression-free survival was 7.0 months (95% CI, 3.6-11.4) in cohort A and 4.5 months (95% CI, 3.4-13.8) in cohort C. Median overall survival was 9.0 months (95% CI, 6.2-12.3) in cohort A and 13.8 months (95% CI, 3.6-not reached) in cohort C. CONCLUSIONS: There was minimal activity with ICI therapy in patients with CDK12-altered mCRPC.
Assuntos
Quinases Ciclina-Dependentes , Inibidores de Checkpoint Imunológico , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/patologia , Neoplasias de Próstata Resistentes à Castração/mortalidade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Pessoa de Meia-Idade , Quinases Ciclina-Dependentes/antagonistas & inibidores , Idoso de 80 Anos ou mais , Mutação , Nivolumabe/uso terapêutico , Nivolumabe/administração & dosagem , Ipilimumab/uso terapêutico , Ipilimumab/administração & dosagem , Ipilimumab/efeitos adversos , Metástase Neoplásica , Antígeno Prostático Específico/sangue , Biomarcadores Tumorais , Intervalo Livre de Progressão , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversosRESUMO
Biallelic loss of cyclin-dependent kinase 12 (CDK12) defines a metastatic castration-resistant prostate cancer (mCRPC) subtype. It remains unclear, however, whether CDK12 loss drives prostate cancer (PCa) development or uncovers pharmacologic vulnerabilities. Here, we show Cdk12 ablation in murine prostate epithelium is sufficient to induce preneoplastic lesions with lymphocytic infiltration. In allograft-based CRISPR screening, Cdk12 loss associates positively with Trp53 inactivation but negatively with Pten inactivation. Moreover, concurrent Cdk12/Trp53 ablation promotes proliferation of prostate-derived organoids, while Cdk12 knockout in Pten-null mice abrogates prostate tumor growth. In syngeneic systems, Cdk12/Trp53-null allografts exhibit luminal morphology and immune checkpoint blockade sensitivity. Mechanistically, Cdk12 inactivation mediates genomic instability by inducing transcription-replication conflicts. Strikingly, CDK12-mutant organoids and patient-derived xenografts are sensitive to inhibition or degradation of the paralog kinase, CDK13. We therein establish CDK12 as a bona fide tumor suppressor, mechanistically define how CDK12 inactivation causes genomic instability, and advance a therapeutic strategy for CDK12-mutant mCRPC.