Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Pharm ; 588: 119739, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32783979

RESUMO

A key consideration in the clinical translation of nanomedicines is determining their in vivo biodistribution in preclinical studies, which is important for predicting and correlating therapeutic efficacy and safety. There are a number of techniques available for analyzing the in vivo biodistribution of nanoparticles, with each having its own advantages and limitations. However, conventional techniques are limited by their inability to image the three-dimensional (3D) association of nanoparticles with cells, vasculature and other biological structures in whole organs at a subcellular level. Recently, optical clearing techniques have been used to evaluate the biodistribution of nanoparticles by 3D organ imaging. Optical clearing is a procedure that is increasingly being used to improve the imaging of biological tissues, whereby light scattering substances are removed to better match the refractive indices of different tissue layers. The use of optical clearing techniques has the potential to transform the way we evaluate the biodistribution of new and existing nanomedicines, as it allows the visualization of the interaction of nanoparticles with the biological environment in intact tissues. This review will compare the main optical clearing techniques and will address the considerations for the use of these techniques to evaluate nanoparticle biodistribution.


Assuntos
Imageamento Tridimensional , Nanopartículas , Imagem Óptica , Distribuição Tecidual
2.
Front Pharmacol ; 9: 80, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467660

RESUMO

There are currently a number of imaging techniques available for evaluating the morphology of liposomes and other nanoparticles, with each having its own advantages and disadvantages that should be considered when interpreting data. Controlling and validating the morphology of nanoparticles is of key importance for the effective clinical translation of liposomal formulations. There are a number of physical characteristics of liposomes that determine their in vivo behavior, including size, surface characteristics, lamellarity, and homogeneity. Despite the great importance of the morphology of nanoparticles, it is generally not well-characterized and is difficult to control. Appropriate imaging techniques provide important details regarding the morphological characteristics of nanoparticles, and should be used in conjunction with other methods to assess physicochemical parameters. In this review, we will discuss the advantages and limitations of available imaging techniques used to evaluate liposomal formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA