Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(22): e2208062, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36871145

RESUMO

This work reports for the first time a highly efficient single-crystal cesium tin triiodide (CsSnI3 ) perovskite nanowire solar cell. With a perfect lattice structure, low carrier trap density (≈5 × 1010 cm-3 ), long carrier lifetime (46.7 ns), and excellent carrier mobility (>600 cm2 V-1 s-1 ), single-crystal CsSnI3 perovskite nanowires enable a very attractive feature for flexible perovskite photovoltaics to power active micro-scale electronic devices. Using CsSnI3 single-crystal nanowire in conjunction with highly conductive wide bandgap semiconductors as front-surface-field layers, an unprecedented efficiency of 11.7% under AM 1.5G illumination is achieved. This work demonstrates the feasibility of all-inorganic tin-based perovskite solar cells via crystallinity and device-structure improvement for the high-performance, and thus paves the way for the energy supply to flexible wearable devices in the future.

2.
Nanotechnology ; 33(40)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35196259

RESUMO

In and Sn are the type of catalysts which do not introduce deep level electrical defects within the bandgap of germanium (Ge). However, Ge nanowires produced using these catalysts usually have a large diameter, a tapered morphology, and mixed crystalline and amorphous phases. In this study, we show that plasma-assisted vapor-liquid-solid (PA-VLS) method can be used to synthesize Ge nanowires. Moreover, at certain parameter domains, the sidewall deposition issues of this synthesis method can be avoided and long, thin tapering-free monocrystalline Ge nanowires can be obtained with In and Sn catalysts. We find two quite different parameter domains where Ge nanowire growth can occur via PA-VLS using In and Sn catalysts: (i) a low temperature-low pressure domain, below âˆ¼235 °C at a GeH4partial pressure of âˆ¼6 mTorr, where supersaturation in the catalyst occurs thanks to the low solubility of Ge in the catalysts, and (ii) a high temperature-high pressure domain, at ∼400 °C and a GeH4partial pressure above âˆ¼20 mTorr, where supersaturation occurs thanks to the high GeH4concentration. While growth at 235 °C results in tapered short wires, operating at 400 °C enables cylindrical nanowire growth. With the increase of growth temperature, the crystalline structure of the nanowires changes from multi-crystalline to mono-crystalline and their growth rate increases from ∼0.3 nm s-1to 5 nm s-1. The cylindrical Ge nanowires grown at 400°C usually have a length of few microns and a radius of around 10 nm, which is well below the Bohr exciton radius in bulk Ge (24.3 nm). To explain the growth mechanism, a detailed growth model based on the key chemical reactions is provided.

3.
Nanotechnology ; 32(34)2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-33910185

RESUMO

Alloying Ge with Sn is one of the promising ways for achieving Si compatible optoelectronics. Here, GeSn nanowires (NWs) are realized via nano-crystallization of a hydrogenated amorphous Ge (a-Ge:H) layer with the help of metal Sn droplets. The full process consists of three steps: (1) SnO2nanoparticle (NP) reduction in a hydrogen plasma to produce Sn catalyst; (2) a-Ge:H deposition at 120 °C and (3) annealing. GeSn alloys with rich morphologies such as discrete nanocrystals (NCs), random, and straight NWs were successfully synthesized by changing process conditions. We show that annealing under Ar plasma favors the elaboration of straight GeSn NWs in contrast to the conventional random GeSn NWs obtained when annealing is performed under a H2atmosphere. Interestingly, GeSn in the form of discrete NCs can be fabricated during the deposition of a-Ge:H at 180 °C. Even more, the synthesis of out-of-plane GeSn NWs has been demonstrated by reversing the deposition sequence of SnO2NPs and a-Ge:H layer.

4.
J Antimicrob Chemother ; 75(6): 1453-1457, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32073602

RESUMO

OBJECTIVES: To evaluate and compare the efficacy of real-time PCR (Xpert Carba-R) and loop-mediated isothermal amplification (Eazyplex® SuperBug CRE) for detecting carbapenemase carriage in Enterobacteriaceae directly from bronchoalveolar lavage (BAL). METHODS: Negative BAL samples were spiked with 21 well-characterized carbapenemase-producing Enterobacteriaceae strains to a final concentration of 102-104 cfu/mL. Xpert Carba-R (Cepheid, Sunnyvale, CA, USA), which detects five targets (blaKPC, blaNDM, blaVIM, blaOXA-48 and blaIMP-1), and the Eazyplex® SuperBug CRE system (Amplex-Diagnostics GmbH, Germany), which detects seven genes (blaKPC, blaNDM, blaVIM, blaOXA-48, blaOXA-181, blaCTXM-1 and blaCTXM-9), were evaluated for the detection of these genes directly from BAL samples. RESULTS: Xpert Carba-R showed 100% agreement with carbapenemase characterization by PCR and sequencing for all final bacteria concentrations. Eazyplex® SuperBug CRE showed 100%, 80% and 27% agreement with PCR and sequencing when testing 104, 103 and 102 cfu/mL, respectively. False negative results for Eazyplex® SuperBug CRE matched the highest cycle threshold values for Xpert Carba-R. Hands-on time for both assays was about 15 min, but Eazyplex® SuperBug CRE results were available within 30 min, whereas Xpert Carba-R took around 50 min. CONCLUSIONS: We here describe the successful use of two commercial diagnostic tests, Xpert Carba-R and Eazyplex® SuperBug CRE, to detect bacterial carbapenem resistance genes directly in lower respiratory tract samples. Our results could be used as proof-of-concept data for validation of these tests for this indication.


Assuntos
Enterobacteriaceae , beta-Lactamases , Proteínas de Bactérias/genética , Líquido da Lavagem Broncoalveolar , Enterobacteriaceae/genética , Alemanha , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade , beta-Lactamases/genética
5.
Nanotechnology ; 31(14): 145602, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31860876

RESUMO

Germanium quantum dots (GeQDs), addressed by self-aligned and epitaxial silicon nanowires (SiNWs) as electrodes, represent the most fundamental and the smallest units that can be integrated into Si optoelectronics for 1550 nm wavelength detection. In this work, individual GeQD photodetectors have been fabricated based on a low temperature self-condensation of uniform amorphous Si (a-Si)/a-Ge bilayers at 300 °C, led by rolling indium (In) droplets. Remarkably, the diameter of the GeQD nodes can be independently controlled to achieve wider GeQDs for maximizing infrared absorption with narrower SiNW electrodes to ensure a high quality Ge/Si hetero-epitaxial connection. Importantly, these hetero GeQD/SiNW photodetectors can be deployed into predesigned locations for scalable device fabrication. The photodetectors demonstrate a responsivity of 1.5 mA W-1 and a photoconductive gain exceeding 102 to the communication wavelength signals, which are related to the beneficial type-II Ge/Si alignment, gradient Ge/Si epitaxial transition and a larger QD/NW diameter ratio. These results indicate a new approach to batch-fabricate and integrate GeQDs for ultra-compact Si-compatible photodetection and imaging applications.

6.
J Environ Manage ; 270: 110891, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721329

RESUMO

There is a growth of social concern regarding the deterioration of the environment. This has boosted the promotion of more efficient and sustainable mechanisms to deal with waste management. In Spain, waste management authorities and related organisations have engaged in a debate about the desirability to implement a packaging Deposit and Refund System (DRS). Under a DRS, consumers have to pay a "packaging deposit" as an added price to products purchased. This deposit is refunded when consumers return the used packaging to the point of sale in perfect conditions for identification. The implementation of such a system implies an important expense of resources. Its effectiveness in increasing the recycling rates crucially depends on public involvement and participation. This paper is grounded in previous studies on attitudes towards recycling. It presents the results of qualitative research performed to capture those factors that are determinant of the expected behaviour of citizens under the proposed DRS. The results indicate that the public perception of the DRS is very sensitive to the information provided. The description of some of the distinctive features of the new system, such as the mechanism associated with the economic deposit or the procedure to return packages, ultimately result in a rather negative evaluation and a reduced predisposition to participate in the waste collection. This study contributes to the analysis of what factors determine the adoption of the DRS, which is key to its success. It indicates that, beyond first impressions, the provision of information describing its features hinders the public's perception and has the potential to modify waste recycling behaviour.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Atitude , Embalagem de Produtos , Pesquisa Qualitativa , Reciclagem , Espanha
7.
Nanotechnology ; 30(19): 194002, 2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-30654343

RESUMO

In this review, we report several rational designs of nanowire-based solar cells from single nanowire to nanowire arrays. Two methods of nanowires fabrication: via 'top-down' and 'bottom-up', and two types of configurations including axial and radial junction are presented for nanowire-based solar cells. To enhance absorption, several photon management schemes are shown in detail, including anti-reflection coating, diffractive grating, and plasmonics. Considering the rational design of nanowire arrays, we summarize a total of seven solar cell structures including axial junctions, radial junctions, substrate interfacial junctions, planar junctions, conductors, junctionless and tandem. Each type is supported by examples which are presented and discussed. Finally, a general comparison between bulk and nanowire solar cell efficiencies is given.

8.
Nanotechnology ; 30(30): 302001, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30849766

RESUMO

Three-dimensional (3D) construction of radial junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells on standing silicon nanowires (SiNWs) is a promising strategy to maximize the light harvesting performance and improve the photocarrier collection in an optimized junction configuration. The unique light in-coupling and absorption behaviour in the antenna-like 3D photonic structures also necessitates a set of new theoretical models and simulation tools to design, predict and optimize the photovoltaic performance of radial junction solar cells, which can be rather different from planar junction solar cells. Recently, the performance of radial junction a-Si:H thin film solar cells has progressed steadily to a level comparable or even superior to that of their planar counterparts, with plenty of room for further improvement. This review will first address the growth strategy and critical parameter control of SiNWs produced via a plasma-assisted low-temperature vapour-liquid-solid procedure using low-melting-point metals as the catalyst. Then, the construction of high-performance radial junction thin film solar cells over the standing SiNW matrix, as well as their optimal structural designs, will be introduced. At the end, the new applications of 3D radial junction units will be summarized, which include, for example, the construction of very flexible, low-cost and efficient a-Si:H solar cells with the highest power-to-weight ratio, the demonstration of highly sensitive solar-blind photodetectors operating at the ultraviolet wavelength spectrum and the development of novel biomimetic radial tandem junction photodetectors with an intrinsic red-green-blue (RGB) colour distinguishing capability.

9.
Nano Lett ; 18(11): 6931-6940, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30346786

RESUMO

Geometric and compositional modulations are the principal parameters of control to tailor the band profile in germanium/silicon (Ge/Si) heteronanowires (NWs). This has been achieved mainly by alternating the feeding precursors during a uniaxial growth of Ge/Si NWs. In this work, a self-automated growth of Ge/Si hetero island-chain nanowires (hiNWs), consisting of wider c-Ge islands connected by thinner c-Si chains, has been accomplished via an indium (In) droplet-mediated transformation of uniform amorphous a-Si/a-Ge bilayer thin films. The surface-running In droplet enforces a circulative hydrodynamics in the nanoscale droplet, which can modulate the absorption depth into the amorphous bilayer and enable a single-run growth of a superlattice-like hiNWs without the need for any external manipulation. Meanwhile, the separation and accumulation of electrons and holes in the phase-modulated Ge/Si superlattice leads to a modulated surface potential profile that can be directly resolved by Kelvin probe force microscopy. This simple self-assembly growth and modulation dynamics can help to establish a powerful new concept or strategy to tailor and program the geometric and compositional profiles of more complex hetero nanowire structures, as promising building blocks to develop advanced nanoelectronics or optoelectronics.

10.
Nanotechnology ; 29(43): 435301, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30074483

RESUMO

The fabrication of arrays of silicon nanowires (Si NWs) with well-defined surface coverage using the vapor-liquid-solid process requires a good control of the density and size distribution for the metal catalyst. We report on a cost-effective bottom-up approach to produce Si NWs by a low-temperature deposition technology using plasma-enhanced chemical vapor deposition and tin dioxide (SnO2) nanoparticles as the source of tin catalyst. This strategy offers a straightforward method to select specific particle sizes by conventional colloidal techniques, and to tune the surface coverage using a polyelectrolyte layer to efficiently immobilize the particles on the substrate by electrostatic grafting. After a further step of reduction into tin metal droplets using hydrogen plasma treatment, the catalyst particles are used for the growth of Si NWs. This approach allows the prodcution of controlled Si NWs arrays which can be used as a template for radial junction thin film solar cells.

11.
Nano Lett ; 17(12): 7638-7646, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29189013

RESUMO

Line-shape engineering is a key strategy to endow extra stretchability to 1D silicon nanowires (SiNWs) grown with self-assembly processes. We here demonstrate a deterministic line-shape programming of in-plane SiNWs into extremely stretchable springs or arbitrary 2D patterns with the aid of indium droplets that absorb amorphous Si precursor thin film to produce ultralong c-Si NWs along programmed step edges. A reliable and faithful single run growth of c-SiNWs over turning tracks with different local curvatures has been established, while high resolution transmission electron microscopy analysis reveals a high quality monolike crystallinity in the line-shaped engineered SiNW springs. Excitingly, in situ scanning electron microscopy stretching and current-voltage characterizations also demonstrate a superelastic and robust electric transport carried by the SiNW springs even under large stretching of more than 200%. We suggest that this highly reliable line-shape programming approach holds a strong promise to extend the mature c-Si technology into the development of a new generation of high performance biofriendly and stretchable electronics.

12.
J Antimicrob Chemother ; 72(12): 3277-3282, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28961773

RESUMO

OBJECTIVES: To investigate the molecular epidemiology, antimicrobial susceptibility and carbapenem resistance determinants of Acinetobacter baumannii isolates from respiratory tract samples of patients diagnosed with ventilator-associated pneumonia (VAP) who were enrolled in the MagicBullet clinical trial. METHODS: A. baumannii isolates were prospectively cultured from respiratory tract samples from 65 patients from 15 hospitals in Greece, Italy and Spain. Susceptibility testing was performed by broth microdilution. Carbapenem resistance determinants were identified by PCR and sequencing. Molecular epidemiology was investigated using rep-PCR (DiversiLab) and international clones (IC) were identified using our in-house database. RESULTS: Of 65 isolates, all but two isolates (97%) were resistant to imipenem and these were always associated with an acquired carbapenemase, OXA-23 (80%), OXA-40 (4.6%), OXA-58 (1.5%) or OXA-23/58 (1.5%). Resistance to colistin was 47.7%. Twenty-two isolates were XDR, and 20 isolates were pandrug-resistant (PDR). The majority of isolates clustered with IC2 (n = 54) with one major subtype comprising isolates from 12 hospitals in the three countries, which included 19 XDR and 16 PDR isolates. CONCLUSIONS: Carbapenem resistance rates were very high in A. baumannii recovered from patients with VAP. Almost half of the isolates were colistin resistant, and 42 (64.6%) isolates were XDR or PDR. Rep-PCR confirmed IC2 is the predominant clonal lineage in Europe and suggests the presence of an epidemic XDR/PDR A. baumannii clone that has spread in Greece, Italy and Spain. These data highlight the difficulty in empirical treatment of patients with A. baumannii VAP in centres with a high prevalence of carbapenem-resistant A. baumannii.


Assuntos
Infecções por Acinetobacter/epidemiologia , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/isolamento & purificação , Farmacorresistência Bacteriana Múltipla , Pneumonia Associada à Ventilação Mecânica/epidemiologia , Pneumonia Associada à Ventilação Mecânica/microbiologia , Genótipo , Grécia/epidemiologia , Humanos , Incidência , Itália/epidemiologia , Testes de Sensibilidade Microbiana , Epidemiologia Molecular , Tipagem Molecular , Reação em Cadeia da Polimerase , Estudos Prospectivos , Análise de Sequência de DNA , Espanha/epidemiologia
13.
Langmuir ; 33(43): 12114-12119, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-28954510

RESUMO

We present our systematic work on the in situ generation of In nanoparticles (NPs) from the reduction of ITO thin films by hydrogen (H2) plasma exposure. In contrast to NP deposition from the vapor phase (i.e., evaporation), the ITO surface can be considered to be a solid reservoir of In atoms thanks to H2 plasma reduction. On one hand, below the In melting temperature, solid In NP formation is governed by the island-growth mode, which is a self-limiting process because the H2 plasma/ITO interaction will be gradually eliminated by the growing In NPs that cover the ITO surface. On the other hand, we show that above the melting temperature In droplets prefer to grow along the grain boundaries on the ITO surface and dramatic coalescence occurs when the growing NPs connect with each other. This growth-connection-coalescence behavior is even strengthened on In/ITO bilayers, where In particles larger than 10 µm can be formed, which are made of evaporated In atoms and in situ released ones. Thanks to this understanding, we manage to disperse dense evaporated In NPs under H2 plasma exposure when inserting an ITO layer between them and substrate like c-Si wafer or glass by modifying the substrate surface chemistry. Further studies are needed for more precise control of this self-assembling method. We expect that our findings are not limited to ITO thin films but could be applicable to various metal NPs generation from the corresponding metal oxide thin films.

14.
Nano Lett ; 16(12): 7317-7324, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960468

RESUMO

The heteroepitaxial growth of crystal silicon thin films on sapphire, usually referred to as SoS, has been a key technology for high-speed mixed-signal integrated circuits and processors. Here, we report a novel nanoscale SoS heteroepitaxial growth that resembles the in-plane writing of self-aligned silicon nanowires (SiNWs) on R-plane sapphire. During a low-temperature growth at <350 °C, compared to that required for conventional SoS fabrication at >900 °C, the bottom heterointerface cultivates crystalline Si pyramid seeds within the catalyst droplet, while the vertical SiNW/catalyst interface subsequently threads the seeds into continuous nanowires, producing self-oriented in-plane SiNWs that follow a set of crystallographic directions of the sapphire substrate. Despite the low-temperature fabrication process, the field effect transistors built on the SoS-SiNWs demonstrate a high on/off ratio of >5 × 104 and a peak hole mobility of >50 cm2/V·s. These results indicate the novel potential of deploying in-plane SoS nanowire channels in places that require high-performance nanoelectronics and optoelectronics with a drastically reduced thermal budget and a simplified manufacturing procedure.

15.
Nano Lett ; 16(9): 5358-64, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27525513

RESUMO

Ultrathin c-Si solar cells have the potential to drastically reduce costs by saving raw material while maintaining good efficiencies thanks to the excellent quality of monocrystalline silicon. However, efficient light trapping strategies must be implemented to achieve high short-circuit currents. We report on the fabrication of both planar and patterned ultrathin c-Si solar cells on glass using low temperature (T < 275 °C), low-cost, and scalable techniques. Epitaxial c-Si layers are grown by PECVD at 160 °C and transferred on a glass substrate by anodic bonding and mechanical cleavage. A silver back mirror is combined with a front texturation based on an inverted nanopyramid array fabricated by nanoimprint lithography and wet etching. We demonstrate a short-circuit current density of 25.3 mA/cm(2) for an equivalent thickness of only 2.75 µm. External quantum efficiency (EQE) measurements are in very good agreement with FDTD simulations. We infer an optical path enhancement of 10 in the long wavelength range. A simple propagation model reveals that the low photon escape probability of 25% is the key factor in the light trapping mechanism. The main limitations of our current technology and the potential efficiencies achievable with contact optimization are discussed.

16.
Opt Express ; 23(19): A1288-96, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406758

RESUMO

Radial junction (RJ) architecture has proven beneficial in boosting light harvesting and fast carrier separation in thin film solar cells. While a comprehensive understanding of the detailed absorption distribution and light incoupling mechanism within such a 3D RJ configuration remains largely unexplored. Taking hydrogenated amorphous Si (a-Si:H) RJ solar cells as an example, we here address in both experimental and theoretical manners the impacts of tilting and spacing configuration on the light absorption and external quantum efficiency (EQE) responses. A nice agreement between the calculated and experimental EQE responses indicates that the light harvesting realized within RJ thin film solar cells is quite robust against geometric variations and shadowing effects. Following the concepts of optical fiber injection, we have been able to single out the contribution arising solely from a resonant-mode-incoupling into the RJ cavities against a sidewall scattering incidence scenario. These results provide insightful viewpoints as well as practical guides in developing a new generation of high performance RJ thin film solar cells.

17.
Opt Express ; 23(5): 5388-96, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836773

RESUMO

Silicon (Si)-based light emitting thin film has been a key ingredient for all-Si-based optoelectronics. Besides material engineering, adopting a novel 3D photonic architecture represents an effective strategy to boost light excitation and extraction from Si-based thin film material. We here explore the use of a nanowires (NW) framework, grown via vapor-liquid-solid mode, to achieve strongly enhanced yellow-green luminescence from SiN(x)O(y)/NW core-shell structure, with an order of magnitude enhancement compared to co-deposited planar references. We found that choosing geometrically-identical but different NW cores (Si or SiO(2)) can lead to profound influence on the overall light emission performance. Combining parametric investigation and theoretical modeling, we have been able to evaluate the key contributions arising from different mechanisms that include near-field enhancement, 3D light trapping and enhanced light extraction. These new findings indicate a new and effective strategy for strong Si-based thin film light emitting source, while being generic enough to be applicable in a wide variety of other thin film materials.

18.
Nano Lett ; 14(11): 6469-74, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25343717

RESUMO

Growing self-assembled silicon nanowires (SiNWs) into precise locations represents a critical capability to scale up SiNW-based functionalities. We here report a novel epitaxy growth phenomenon and strategy to fabricate orderly arrays of self-aligned in-plane SiNWs on Si(100) substrates following exactly the underlying crystallographic orientations. We observe also a rich set of distinctive growth dynamics/modes that lead to remarkably different morphologies of epitaxially grown SiNWs/or grains under variant growth balance conditions. High-resolution transmission electron microscopy cross-section analysis confirms a coherent epitaxy (or partial epitaxy) interface between the in-plane SiNWs and the Si(100) substrate, while conductive atomic force microscopy characterization reveals that electrically rectifying p-n junctions are formed between the p-type doped in-plane SiNWs and the n-type c-Si(100) substrate. This in-plane epitaxy growth could provide an effective means to define nanoscale junction and doping profiles, providing a basis for exploring novel nanoelectronics.

19.
Langmuir ; 30(34): 10290-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25100577

RESUMO

The effect of wettability on the undesirable bundling of silicon nanowire (SiNW) arrays fabricated by metal-assisted chemical etching (MACE) method is investigated. This paper reports a simple and low-cost approach to achieve dense SiNW arrays with excellent lateral separation. A hydrophilic pretreatment on the initial wafer substrate prior to the etching procedure, followed by a hydrophobic post-treatment of the fabricated SiNWs, allows the fabrication of large and dense arrays of SiNWs with no agglomeration. These results are discussed within the framework of the detailed balance of forces acting on the nanowires.

20.
J Chem Phys ; 141(8): 084708, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173031

RESUMO

When atomic hydrogen interacts with hydrogenated amorphous silicon (a-Si:H), the induced modifications are of crucial importance during a-Si:H based devices manufacturing or processing. In the case of hydrogen plasma, the depth of the modified zone depends not only on the plasma processing parameters but also on the material. In this work, we exposed a-Si:H thin films to H2 plasma just after their deposition. In situ UV-visible spectroscopic ellipsometry measurements were performed to track the H-induced changes in the material. The competition between hydrogen insertion and silicon etching leads to first order kinetics in the time-evolution of the thickness of the H-modified zone. We analyzed the correlation between the steady state structural parameters of the H-modified layer and the main levers that control the plasma-surface interaction. In comparison with a simple doped layer, exposure of a-Si:H based junctions to the same plasma treatment leads to a thinner H-rich subsurface layer, suggesting a possible charged state of hydrogen diffusing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA