Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
An Acad Bras Cienc ; 89(4): 2817-2824, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29236852

RESUMO

Casearia genus (Salicaceae) is found in sub-tropical and tropical regions of the world and comprises about 160-200 species. It is a medicinal plant used in South America, also known as "guaçatonga", "erva-de-tiú", "cafezinho-do-mato". In Brazil, there are about 48 species and 12 are registered in the State of Rio de Janeiro, including Casearia sylvestris Sw. There are many studies related to the chemical profile and cytotoxic activities of extracts from these plants, although few studies about the antifungal potential of the essential oil have been reported. In this work, we have studied the antifungal properties of the essential oil of C. sylvestris leaves, as well as of their fractions, against four yeasts (Saccharomyces cerevisae, Candida albicans, C. glabrata and C. krusei) for the first time. The chemical analysis of the essential oil revealed a very diversified (n = 21 compounds) volatile fraction composed mainly of non-oxygenated sesquiterpenes (72.1%). These sesquiterpenes included α-humulene (17.8%) and α-copaene (8.5%) and the oxygenated sesquiterpene spathulenol (11.8%) were also identified. Monoterpenes were not identified. The fractions are mainly composed of oxygenated sesquiterpenes, and the most active fraction is rich in the sesquiterpene 14-hydroxy -9-epi-ß-caryophyllene. This fraction was the most effective in inhibiting the growth of three yeast strains.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Casearia/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Sesquiterpenos/química , Brasil , Óleos Voláteis/farmacologia , Plantas Medicinais , Sesquiterpenos Policíclicos
2.
Int J Biol Macromol ; 222(Pt A): 1015-1026, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36183752

RESUMO

Despite the fast development of vaccines, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still circulates through variants of concern (VoC) and escape the humoral immune response. SARS-CoV-2 has provoked over 200,000 deaths/months since its emergence and only a few antiviral drugs showed clinical benefit up to this moment. Thus, chemical structures endowed with anti-SARS-CoV-2 activity are important for continuous antiviral development and natural products represent a fruitful source of substances with biological activity. In the present study, agathisflavone (AGT), a biflavonoid from Anacardium occidentale was investigated as a candidate anti-SARS-CoV-2 compound. In silico and enzymatic analysis indicated that AGT may target mainly the viral main protease (Mpro) and not the papain-like protease (PLpro) in a non-competitive way. Cell-based assays in type II pneumocytes cell lineage (Calu-3) showed that SARS-CoV-2 is more susceptible to AGT than to apigenin (APG, monomer of AGT), in a dose-dependent manner, with an EC50 of 4.23 ± 0.21 µM and CC50 of 61.3 ± 0.1 µM and with a capacity to inhibit the level of pro-inflammatory mediator tumor necrosis factor-alpha (TNF-α). These results configure AGT as an interesting chemical scaffold for the development of novel semisynthetic antivirals against SARS-CoV-2.


Assuntos
Biflavonoides , Tratamento Farmacológico da COVID-19 , Humanos , SARS-CoV-2 , Proteases 3C de Coronavírus , Biflavonoides/farmacologia , Peptídeo Hidrolases , Antivirais/química , Inibidores de Proteases/química
3.
Curr Top Med Chem ; 20(2): 111-120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31854280

RESUMO

BACKGROUND: Neuraminidase inhibitors (NAIs) are the only class of antivirals in clinical use against influenza virus approved worldwide. However, approximately 1-3% of circulating strains present resistance mutations to oseltamivir (OST), the most used NAI. Therefore, it is important to catalogue new molecules to inhibit influenza virus, especially OST-resistant strains. Natural products from tropical plants used for human consumption represent a worthy class of substances. Their use could be stimulated in resource-limited setting where the access to expensive antiviral therapies is restricted. METHODS: We evaluated the anti-influenza virus activity of agathisflavone derived from Anacardium occidentale L. RESULTS: The neuraminidase (NA) activity of wild-type and OST-resistant influenza virus was inhibited by agathisflavone, with IC50 values ranging from 20 to 2.0 µM, respectively. Agathisflavone inhibited influenza virus replication with EC50 of 1.3 µM. Sequential passages of the virus in the presence of agathisflavone revealed the emergence of mutation R249S, A250S and R253Q in the NA gene. These changes are outside the OST binding region, meaning that agathisflavone targets this viral enzyme at a region different than conventional NAIs. CONCLUSION: Altogether our data suggest that agathisflavone has a promising chemical structure for the development of anti-influenza drugs.


Assuntos
Anacardium/química , Biflavonoides/farmacologia , Inibidores Enzimáticos/farmacologia , Neuraminidase/antagonistas & inibidores , Orthomyxoviridae/efeitos dos fármacos , Compostos Fitoquímicos/farmacologia , Animais , Biflavonoides/química , Biflavonoides/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Cães , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Células Madin Darby de Rim Canino/efeitos dos fármacos , Células Madin Darby de Rim Canino/virologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Neuraminidase/metabolismo , Orthomyxoviridae/enzimologia , Compostos Fitoquímicos/química , Compostos Fitoquímicos/isolamento & purificação , Relação Estrutura-Atividade , Replicação Viral/efeitos dos fármacos
4.
PLoS One ; 10(10): e0139236, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26462111

RESUMO

The influenza virus causes acute respiratory infections, leading to high morbidity and mortality in groups of patients at higher risk. Antiviral drugs represent the first line of defense against influenza, both for seasonal infections and pandemic outbreaks. Two main classes of drugs against influenza are in clinical use: M2-channel blockers and neuraminidase inhibitors. Nevertheless, because influenza strains that are resistant to these antivirals have been described, the search for novel compounds with different mechanisms of action is necessary. Here, we investigated the anti-influenza activity of a fungi-derived natural product, aureonitol. This compound inhibited influenza A and B virus replication. This compound was more effective against influenza A(H3N2), with an EC50 of 100 nM. Aureonitol cytoxicity was also very low, with a CC50 value of 1426 µM. Aureonitol inhibited influenza hemagglutination and, consequently, significantly impaired virus adsorption. Molecular modeling studies revealed that aureonitol docked in the sialic acid binding site of hemagglutinin, forming hydrogen bonds with highly conserved residues. Altogether, our results indicate that the chemical structure of aureonitol is promising for future anti-influenza drug design.


Assuntos
Furanos/farmacologia , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Glicoproteínas de Membrana/metabolismo , Replicação Viral/efeitos dos fármacos , Aminoácidos/genética , Animais , Antivirais/farmacologia , Morte Celular/efeitos dos fármacos , Simulação por Computador , Sequência Conservada , Cães , Relação Dose-Resposta a Droga , Furanos/química , Células HEK293 , Hemaglutinação/efeitos dos fármacos , Hemaglutininas/química , Humanos , Células Madin Darby de Rim Canino , Neuraminidase/metabolismo , Fatores de Tempo , Internalização do Vírus/efeitos dos fármacos
5.
An. acad. bras. ciênc ; 89(4): 2817-2824, Oct.-Dec. 2017. tab
Artigo em Inglês | LILACS | ID: biblio-886845

RESUMO

ABSTRACT Casearia genus (Salicaceae) is found in sub-tropical and tropical regions of the world and comprises about 160-200 species. It is a medicinal plant used in South America, also known as "guaçatonga", "erva-de-tiú", "cafezinho-do-mato". In Brazil, there are about 48 species and 12 are registered in the State of Rio de Janeiro, including Casearia sylvestris Sw. There are many studies related to the chemical profile and cytotoxic activities of extracts from these plants, although few studies about the antifungal potential of the essential oil have been reported. In this work, we have studied the antifungal properties of the essential oil of C. sylvestris leaves, as well as of their fractions, against four yeasts (Saccharomyces cerevisae, Candida albicans, C. glabrata and C. krusei) for the first time. The chemical analysis of the essential oil revealed a very diversified (n = 21 compounds) volatile fraction composed mainly of non-oxygenated sesquiterpenes (72.1%). These sesquiterpenes included α-humulene (17.8%) and α-copaene (8.5%) and the oxygenated sesquiterpene spathulenol (11.8%) were also identified. Monoterpenes were not identified. The fractions are mainly composed of oxygenated sesquiterpenes, and the most active fraction is rich in the sesquiterpene 14-hydroxy -9-epi-β-caryophyllene. This fraction was the most effective in inhibiting the growth of three yeast strains.


Assuntos
Sesquiterpenos/química , Candida albicans/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Casearia/química , Antifúngicos/farmacologia , Plantas Medicinais , Brasil , Óleos Voláteis/farmacologia , Sesquiterpenos Policíclicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA