Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Fluoresc ; 20(3): 719-31, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20179998

RESUMO

The in-situ, non-contact, and non-destructive measurement of the physicochemical properties such as the polarity of thin, hydrophilic polymer films is desirable in many areas of polymer science. Polarity is a complex factor and encompasses a range of non-covalent interactions including dipolarity/polarizability and hydrogen bonding. A polarity measurement method based on fluorescence would be ideal, but the key challenge is to identify suitable probes which can accurately measure specific polarity related parameters. In this manuscript we assess a variety of fluorophores for measuring the polarity of a series of relatively hydrophilic, thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamide (NIPAM/NtBA) copolymers. The emission properties of both pyrene and 3-Hydroxyflavone (3-HF) based fluorophores were measured in dry polymer films. In the case of pyrene, a relatively weak, linear relationship between polymer composition and the ratio of the first to the third vibronic band of the emission spectrum (I(1)/I(3)) is observed, but pyrene emission is very sensitive to temperature and thus not suitable for robust polarity measurements. The 3-HF fluorophores which can undergo an excited-state intramolecular proton transfer (ESIPT) reaction have a dual band fluorescence emission that exhibits strong solvatochromism. Here we used 4'-diethylamino-3-hydroxyflavone (FE), 5,6-benzo-4'-diethylamino-3-hydroxyflavone (BFE), and 4 -diethylamino-3-hydroxy-7-methoxyflavone (MFE). The log ratio of the dual band fluorescence emission (log (I(N*)/I(T*))) of 3-HF doped, dry, NIPAM-NtBA copolymer films were found to depend linearly on copolymer composition, with increasing hydrophobicity (greater NtBA fraction) leading to a decrease in the value of log (I(N*)/I(T*)). However, the ESIPT process in the polymer matrix was found to be irreversible, non-equilibrated and occurs over a much longer timescale in comparison to the results previously reported for liquid solvents.


Assuntos
Corantes Fluorescentes/química , Polímeros/química , Acrilamidas , Resinas Acrílicas , Formas de Dosagem , Flavonas , Flavonoides , Fluorescência , Ligação de Hidrogênio , Prótons , Pirenos , Solventes/química , Temperatura
2.
Appl Spectrosc ; 63(4): 442-9, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19366511

RESUMO

Thin polymer films are important in many areas of biomaterials research, biomedical devices, and biological sensors. The accurate in situ measurement of multiple physicochemical properties of thin polymer films is critical in understanding biocompatibility, polymer function, and performance. In this work we demonstrate a facile spectroscopic methodology for accurately measuring the micro-polarity and hydrogen-bond donor/acceptor ability for a series of relatively hydrophilic thermoresponsive copolymers. The micro-polarity of the N-isopropylacrylamide (NIPAM) and N-tert-butylacrylamide (NtBA) co-polymers was evaluated by means of the E(T)(30), alpha, beta, and pi empirical solvatochromic polarity parameters. The data shows that increasing the NtBA fraction in the dry copolymer film reduces polarity and hydrogen-bonding ability. Within the Kamlet-Taft polarity framework, the NIPAM/NtBA copolymer films are strong hydrogen-bond acceptors, strongly dipolar/polarizable, and rather moderate hydrogen-bond donors. This characterization provides a more comprehensive physicochemical description of polymers, which aids the interpretation of film performance. Comparison of the measured E(T)(30) values with literature data for other water-soluble polymers show that dry NIPAM/NtBA copolymers are slightly more polar than poly(ethylene oxide), less polar than polyvinylalcohol, and approximately the same polarity as poly(N-vinyl-2-pyrrolidone). These findings indicate that this spectroscopic method is a facile, rapid, and nondestructive methodology for measuring polymer properties in situ, suitable for most biomaterials research laboratories.


Assuntos
Acrilamidas/química , Ligação de Hidrogênio , Solventes/química , Espectrofotometria , Espectrofotometria Ultravioleta , Temperatura
3.
Biomed Mater ; 14(3): 034102, 2019 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-30726780

RESUMO

Silk fibroin is a promising biomaterial for tissue engineering due to its valuable mechanical and biological properties. However, being a natural product and a protein, it lacks the processability and uniform quality of an advanced synthetic material. Here we propose a way to overcome this contradiction using novel fibroin photocrosslinkable derivative (FBMA). FBMA was synthesized by methacrylation of native fibroin nucleophilic side groups. It was dissolved in either formic acid (FA) or hexafluoroisopropanol (HFIP), and the obtained solutions were photocrosslinked into hydrogel scaffolds of various structural forms including films, micropatterns, pads and macroporous sponges. UV-exposition of dry FBMA films through a photomask created complex microscaled patterns of the polymer. The nature of the solvent affected the properties of resulting hydrogels. When HFIP was used as the solvent, the resulting hydrogels had a storage modulus ∼4 times higher than that of hydrogels fabricated using FA and ∼20 times higher compared to the reference hydrogel obtained from pristine fibroin. Both FBMA-based hydrogels were biocompatible and supported fibroblast adhesion and growth in vitro. Cells cultivated on FBMA scaffolds produced with HFIP exhibited more spread phenotype at 4 and 24 h of cultivation, consistent with increased stiffness of the hydrogel. Hence, FBMA is an attractive material for fabrication of micropatterned scaffolds of centimeter-scale size with minutely tunable physico-chemical properties via convenient and reproducible technological processes, applicable for rapid prototyping.


Assuntos
Fibroínas/química , Hidrogéis/química , Alicerces Teciduais , Células 3T3 , Actinas/química , Animais , Materiais Biocompatíveis/química , Sobrevivência Celular , Reagentes de Ligações Cruzadas/química , Citoesqueleto/química , Formiatos/química , Metacrilatos/química , Camundongos , Microscopia de Força Atômica , Fenótipo , Fotoquímica , Polímeros/química , Propanóis/química , Reologia , Seda/química , Propriedades de Superfície , Engenharia Tecidual/métodos
4.
ACS Appl Mater Interfaces ; 8(41): 27564-27572, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661256

RESUMO

Poly(N-isopropylacrylamide) (pNIPAm) is widely used to fabricate thermoresponsive surfaces for cell sheet detachment. Many complex and expensive techniques have been employed to produce pNIPAm substrates for cell culture. The spin-coating technique allows rapid fabrication of pNIPAm substrates with high reproducibility and uniformity. In this study, the dynamics of cell attachment, proliferation, and function on non-cross-linked spin-coated pNIPAm films of different thicknesses were investigated. The measurements of advancing contact angle revealed increasing contact angles with increasing film thickness. Results suggest that more hydrophilic 50 and 80 nm thin pNIPAm films are more preferable for cell sheet fabrication, whereas more hydrophobic 300 and 900 nm thick spin-coated pNIPAm films impede cell attachment. These changes in cell behavior were correlated with changes in thickness and hydration of pNIPAm films. The control of pNIPAm film thickness using the spin-coating technique offers an effective tool for cell sheet-based tissue engineering.

5.
Pharmacol Ther ; 102(1): 1-15, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15056495

RESUMO

The success of percutaneous transluminal coronary angioplasty in treatment of acute coronary syndromes has been compromised by the incidence of restenosis. The physical insult of balloon insertion can damage or remove the endothelial monolayer, thereby generating a prothrombotic surface. The resulting inappropriate response to injury can also lead to penetration of inflammatory cells, conversion of the underlying media to a synthetic phenotype, deposition of extracellular matrix, constrictive remodeling, and neointimal hyperplasia. While stent implantation at the time of balloon insertion has offset some of these events, inflammatory responses to the implanted biomaterial (stent) and intimal hyperplasia are still prominent features of the procedure, leading in 20-30% of cases to in-stent restenosis within a year. Systemic delivery of drugs designed to offset in-stent restenosis injury has been largely unsuccessful, which has led to the development of strategies for coating stents with drugs for local delivery. Drug-eluting stents constitute an innovative means of further reducing the incidence of restenosis injury and clinical trials have shown encouraging results. This review focuses on properties of a class of environment-sensitive hydrogels, the N-isopropylacrylamide-based thermoresponsive co-polymers, on their potential roles as stent coatings, on their demonstrated ability to incorporate and release drugs that modify vascular endothelial and smooth muscle cell functions, and on issues that still await clarification, prior to their adoption in a clinical setting.


Assuntos
Reestenose Coronária/prevenção & controle , Sistemas de Liberação de Medicamentos , Polímeros , Stents , Trombose/prevenção & controle , Acrilamidas/química , Angioplastia com Balão/efeitos adversos , Reestenose Coronária/etiologia , Humanos , Hidrogéis , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico , Paclitaxel/administração & dosagem , Paclitaxel/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , Sirolimo/administração & dosagem , Sirolimo/uso terapêutico , Trombose/etiologia
6.
Cardiovasc Pathol ; 12(2): 105-10, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12684168

RESUMO

INTRODUCTION: Local delivery of antimitotic agents is a potential therapeutic strategy for protection of injured coronary vasculature against intimal hyperplasia and restenosis. This study sought to establish the principle that thermoresponsive poly(N-isopropylacrylamide) co-polymer films can be used to deliver, in a controlled manner, an antimitotic agent to vascular smooth muscle cells (VSMC). METHODS: A series of co-polymer films was prepared, using varying ratios (w/w) of N-isopropylacrylamide (NiPAAm) monomer to N-tert-butylacrylamide (NtBAAm) and loaded with the antimitotic agent colchicine (100 nmol/film) at room temperature. RESULTS: The extent of colchicine release at 37 degrees C was inversely proportional to the amount of NtBAAm in co-polymer films: release after 48 h from 85:15, 65:35 and 50:50 (NiPAAm:NtBAAm) films was 26, 17 and 0.5 nmol, respectively. In cytotoxicity studies, when medium incubated with co-polymers for 24 h (in the absence of colchicine) was further incubated with target bovine aortic smooth muscle cells (BASMC), no loss of cell viability occurred. Colchicine released from all three co-polymer films significantly inhibited proliferation and random migration of BASMC: 100 nM colchicine (released from 65:35 NiPAAm:NtBAAm) reduced cell proliferation to 25.7+/-1.7% of levels seen in the absence of colchicine (control) and random cell migration to 37.7+/-5.7% of control (mean+/-S.E.M., n = 3, P < .01 and P < .05, respectively). The magnitudes of these effects were comparable to those seen in separate experiments with native colchicine and were observed in samples of released colchicine which had been stored at -20 degrees C for up to 6 months. CONCLUSIONS: This study has shown that the release of the antimitotic agent colchicine, from NiPAAm/NtBAAm co-polymer films can be manipulated by changes in co-polymer composition. Furthermore, such drug released at 37 degrees C retains comparable bioactivity to that of native colchicine.


Assuntos
Resinas Acrílicas/farmacologia , Antineoplásicos/farmacologia , Colchicina/farmacologia , Músculo Liso Vascular/efeitos dos fármacos , Acrilamidas/química , Acrilamidas/farmacologia , Resinas Acrílicas/química , Animais , Antineoplásicos/metabolismo , Bovinos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Colchicina/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Portadores de Fármacos/farmacologia , Estabilidade de Medicamentos , Temperatura Alta , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Polímeros/química , Polímeros/farmacologia
7.
Langmuir ; 20(23): 10138-45, 2004 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-15518505

RESUMO

Surface properties of poly(N-isopropylacrylamide) (PNIPAM) copolymer films were studied by contact angle measurements and optical and atomic force microscopy. We prepared a series of copolymers of N-isopropylacrylamide with N-tert-butylacrylamide (NtBA) in order of increasing hydrophobicity. The measurements of the advancing contact angle of water at 37 degrees C were hampered by the observation of a distinct stick/slip pattern on all polymers in the series with the exception of poly(NtBA) (PNtBA). We attributed this behavior to the film deformation by the vertical component of liquid surface tension leading to the pinning of the moving contact line. This was confirmed by the observation of a ridge formed at the pinned contact line by optical microscopy. However, meaningful contact (without the stick/slip pattern and with a time-independent advancing contact angle) angles for this thermoresponsive polymer series could be obtained with carefully selected organic liquids. We used the Li and Neumann equation of state to calculate the surface energy and contact angles of water for all polymers in the series of copolymers and van Oss, Chaudhury, and Good (vOCG) acid-base theory for PNtBA. The surface energies of the thermoresponsive polymers were in the range of 38.9 mJ/m2 (PNIPAM) to 31 mJ/m2 (PNtBA) from the equation of state approach. The surface energy of PNtBA calculated using vOCG theory was 29.0 mJ/m2. The calculated contact angle for PNIPAM (74.5 +/- 0.2 degrees ) is compared with previously reported contact angles obtained for PNIPAM-modified surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA