Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Metab Eng ; 81: 157-166, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38081506

RESUMO

Rare diseases are, despite their name, collectively common and millions of people are affected daily of conditions where treatment often is unavailable. Sulfatases are a large family of activating enzymes related to several of these diseases. Heritable genetic variations in sulfatases may lead to impaired activity and a reduced macromolecular breakdown within the lysosome, with several severe and lethal conditions as a consequence. While therapeutic options are scarce, treatment for some sulfatase deficiencies by recombinant enzyme replacement are available. The recombinant production of such sulfatases suffers greatly from both low product activity and yield, further limiting accessibility for patient groups. To mitigate the low product activity, we have investigated cellular properties through computational evaluation of cultures with varying media conditions and comparison of two CHO clones with different levels of one active sulfatase variant. Transcriptome analysis identified 18 genes in secretory pathways correlating with increased sulfatase production. Experimental validation by upregulation of a set of three key genes improved the specific enzymatic activity at varying degree up to 150-fold in another sulfatase variant, broadcasting general production benefits. We also identified a correlation between product mRNA levels and sulfatase activity that generated an increase in sulfatase activity when expressed with a weaker promoter. Furthermore, we suggest that our proposed workflow for resolving bottlenecks in cellular machineries, to be useful for improvements of cell factories for other biologics as well.


Assuntos
Sulfatases , Humanos , Sulfatases/genética , Sulfatases/metabolismo
2.
Metab Eng ; 72: 171-187, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35301123

RESUMO

Biologics represent the fastest growing group of therapeutics, but many advanced recombinant protein moieties remain difficult to produce. Here, we identify metabolic engineering targets limiting expression of recombinant human proteins through a systems biology analysis of the transcriptomes of CHO and HEK293 during recombinant expression. In an expression comparison of 24 difficult to express proteins, one third of the challenging human proteins displayed improved secretion upon host cell swapping from CHO to HEK293. Guided by a comprehensive transcriptomics comparison between cell lines, especially highlighting differences in secretory pathway utilization, a co-expression screening of 21 secretory pathway components validated ATF4, SRP9, JUN, PDIA3 and HSPA8 as productivity boosters in CHO. Moreover, more heavily glycosylated products benefitted more from the elevated activities of the N- and O-glycosyltransferases found in HEK293. Collectively, our results demonstrate the utilization of HEK293 for expression rescue of human proteins and suggest a methodology for identification of secretory pathway components for metabolic engineering of HEK293 and CHO.


Assuntos
Via Secretória , Animais , Células CHO , Cricetinae , Cricetulus , Células HEK293 , Humanos , Proteínas Recombinantes , Via Secretória/genética
3.
Nucleic Acids Res ; 48(20): e119, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33051690

RESUMO

Predictably regulating protein expression levels to improve recombinant protein production has become an important tool, but is still rarely applied to engineer mammalian cells. We therefore sought to set-up an easy-to-implement toolbox to facilitate fast and reliable regulation of protein expression in mammalian cells by introducing defined RNA hairpins, termed 'regulation elements (RgE)', in the 5'-untranslated region (UTR) to impact translation efficiency. RgEs varying in thermodynamic stability, GC-content and position were added to the 5'-UTR of a fluorescent reporter gene. Predictable translation dosage over two orders of magnitude in mammalian cell lines of hamster and human origin was confirmed by flow cytometry. Tuning heavy chain expression of an IgG with the RgEs to various levels eventually resulted in up to 3.5-fold increased titers and fewer IgG aggregates and fragments in CHO cells. Co-expression of a therapeutic Arylsulfatase-A with RgE-tuned levels of the required helper factor SUMF1 demonstrated that the maximum specific sulfatase activity was already attained at lower SUMF1 expression levels, while specific production rates steadily decreased with increasing helper expression. In summary, we show that defined 5'-UTR RNA-structures represent a valid tool to systematically tune protein expression levels in mammalian cells and eventually help to optimize recombinant protein expression.


Assuntos
Regiões 5' não Traduzidas , Regulação da Expressão Gênica/genética , Biossíntese de Proteínas/genética , Engenharia de Proteínas/métodos , Proteínas Recombinantes/genética , Animais , Células CHO , Cerebrosídeo Sulfatase/genética , Cerebrosídeo Sulfatase/metabolismo , Cricetulus , Expressão Gênica , Vetores Genéticos , Células HEK293 , Humanos , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Proteínas Recombinantes/biossíntese
4.
Mol Pharm ; 18(1): 328-337, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33259222

RESUMO

Albumin-binding fusion partners are frequently used as a means for the in vivo half-life extension of small therapeutic molecules that would normally be cleared very rapidly from circulation. However, in applications where small size is key, fusion to an additional molecule can be disadvantageous. Albumin-derived affinity proteins (ADAPTs) are a new type of scaffold proteins based on one of the albumin-binding domains of streptococcal protein G, with engineered binding specificities against numerous targets. Here, we engineered this scaffold further and showed that this domain, as small as 6 kDa, can harbor two distinct binding surfaces and utilize them to interact with two targets simultaneously. These novel ADAPTs were developed to possess affinity toward both serum albumin as well as another clinically relevant target, thus circumventing the need for an albumin-binding fusion partner. To accomplish this, we designed a phage display library and used it to successfully select for single-domain bispecific binders toward a panel of targets: TNFα, prostate-specific antigen (PSA), C-reactive protein (CRP), renin, angiogenin, myeloid-derived growth factor (MYDGF), and insulin. Apart from successfully identifying bispecific binders for all targets, we also demonstrated the formation of the ternary complex consisting of the ADAPT together with albumin and each of the five targets, TNFα, PSA, angiogenin, MYDGF, and insulin. This simultaneous binding of albumin and other targets presents an opportunity to combine the advantages of small molecules with those of larger ones allowing for lower cost of goods and noninvasive administration routes while still maintaining a sufficient in vivo half-life.


Assuntos
Proteínas Recombinantes de Fusão/metabolismo , Albumina Sérica/metabolismo , Proteínas de Bactérias/metabolismo , Meia-Vida , Expectativa de Vida , Ligação Proteica/fisiologia , Streptococcus/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Nucleic Acids Res ; 47(6): e34, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30715449

RESUMO

Mutagenesis libraries are essential for combinatorial protein engineering. Despite improvements in gene synthesis and directed mutagenesis, current methodologies still have limitations regarding the synthesis of complete antibody single-chain variable fragment (scFv) genes and simultaneous diversification of all six CDRs. Here, we describe the generation of mutagenesis libraries for antibody affinity maturation using a cell-free solid-phase technique for annealing of single-strand mutagenic oligonucleotides. The procedure consists of PCR-based incorporation of uracil into a wild-type template, bead-based capture, elution of single-strand DNA, and in vitro uracil excision enzyme based degradation of the template DNA. Our approach enabled rapid (8 hours) mutagenesis and automated cloning of 50 position-specific alanine mutants for mapping of a scFv antibody paratope. We further exemplify our method by generating affinity maturation libraries with diversity introduced in critical, nonessential, or all CDR positions randomly. Assessment with Illumina deep sequencing showed less than 1% wild-type in two libraries and the ability to diversify all CDR positions simultaneously. Selections of the libraries with bacterial display and deep sequencing evaluation of the selection output showed that diversity introduced in non-essential positions allowed for a more effective enrichment of improved binders compared to the other two diversification strategies.


Assuntos
Afinidade de Anticorpos , Sítios de Ligação de Anticorpos/genética , Mutagênese Sítio-Dirigida , Engenharia de Proteínas/métodos , Técnicas de Síntese em Fase Sólida/métodos , Uracila/metabolismo , Afinidade de Anticorpos/genética , Clonagem Molecular/métodos , Enzimas de Restrição do DNA/metabolismo , Mapeamento de Epitopos , Sequenciamento de Nucleotídeos em Larga Escala , Mutagênese Sítio-Dirigida/métodos , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Biblioteca de Peptídeos , Anticorpos de Cadeia Única/genética , Staphylococcus/genética , Biologia Sintética/métodos , Uracila/química
6.
Proteomics ; 19(15): e1900008, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31278833

RESUMO

The plasma proteome offers a clinically useful window into human health. Recent advances from highly multiplexed assays now call for appropriate pipelines to validate individual candidates. Here, a workflow is developed to build dual binder sandwich immunoassays (SIA) and for proteins predicted to be secreted into plasma. Utilizing suspension bead arrays, ≈1800 unique antibody pairs are first screened against 209 proteins with recombinant proteins as well as EDTA plasma. Employing 624 unique antibodies, dilution-dependent curves in plasma and concentration-dependent curves of full-length proteins for 102 (49%) of the targets are obtained. For 22 protein assays, the longitudinal, interindividual, and technical performance is determined in a set of plasma samples collected from 18 healthy subjects every third month over 1 year. Finally, 14 of these assays are compared with with SIAs composed of other binders, proximity extension assays, and affinity-free targeted mass spectrometry. The workflow provides a multiplexed approach to screen for SIA pairs that suggests using at least three antibodies per target. This design is applicable for a wider range of targets of the plasma proteome, and the assays can be applied for discovery but also to validate emerging candidates derived from other platforms.


Assuntos
Imunoensaio/métodos , Biotinilação , Humanos , Espectrometria de Massas , Pessoa de Meia-Idade , Plasma/química , Proteoma/análise , Proteômica/métodos
7.
Bioinformatics ; 33(16): 2487-2495, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28398465

RESUMO

MOTIVATION: The Human Protein Atlas (HPA) enables the simultaneous characterization of thousands of proteins across various tissues to pinpoint their spatial location in the human body. This has been achieved through transcriptomics and high-throughput immunohistochemistry-based approaches, where over 40 000 unique human protein fragments have been expressed in E. coli. These datasets enable quantitative tracking of entire cellular proteomes and present new avenues for understanding molecular-level properties influencing expression and solubility. RESULTS: Combining computational biology and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. AVAILABILITY AND IMPLEMENTATION: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template for analysis of further expression and solubility datasets. CONTACT: ebrunk@ucsd.edu or johanr@biotech.kth.se. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional/métodos , Regulação da Expressão Gênica , Aprendizado de Máquina , Proteoma/genética , Escherichia coli/genética , Humanos , Especificidade de Órgãos , Proteoma/química , Proteoma/metabolismo , Solubilidade
9.
Nucleic Acids Res ; 43(7): e49, 2015 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-25618848

RESUMO

We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts at an average success rate above 80%. We report on several applications for SPC and we suggest it to be particularly suitable for high-throughput efforts using laboratory workstations.


Assuntos
Clonagem Molecular/métodos , DNA/genética , Enzimas de Restrição do DNA/metabolismo , Vetores Genéticos , Hibridização de Ácido Nucleico
10.
Mol Cell Proteomics ; 13(6): 1585-97, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24705123

RESUMO

Antibodies are of importance for the field of proteomics, both as reagents for imaging cells, tissues, and organs and as capturing agents for affinity enrichment in mass-spectrometry-based techniques. It is important to gain basic insights regarding the binding sites (epitopes) of antibodies and potential cross-reactivity to nontarget proteins. Knowledge about an antibody's linear epitopes is also useful in, for instance, developing assays involving the capture of peptides obtained from trypsin cleavage of samples prior to mass spectrometry analysis. Here, we describe, for the first time, the design and use of peptide arrays covering all human proteins for the analysis of antibody specificity, based on parallel in situ photolithic synthesis of a total of 2.1 million overlapping peptides. This has allowed analysis of on- and off-target binding of both monoclonal and polyclonal antibodies, complemented with precise mapping of epitopes based on full amino acid substitution scans. The analysis suggests that linear epitopes are relatively short, confined to five to seven residues, resulting in apparent off-target binding to peptides corresponding to a large number of unrelated human proteins. However, subsequent analysis using recombinant proteins suggests that these linear epitopes have a strict conformational component, thus giving us new insights regarding how antibodies bind to their antigens.


Assuntos
Anticorpos/genética , Mapeamento de Epitopos/métodos , Biossíntese Peptídica/genética , Proteoma , Sequência de Aminoácidos , Anticorpos/imunologia , Sítios de Ligação , Epitopos/genética , Epitopos/imunologia , Humanos , Espectrometria de Massas , Biossíntese Peptídica/imunologia , Tripsina
11.
Microb Cell Fact ; 14: 167, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26474754

RESUMO

BACKGROUND: There is a strong interest in using photosynthetic cyanobacteria as production hosts for biofuels and chemicals. Recent work has shown the benefit of pathway engineering, enzyme tolerance, and co-factor usage for improving yields of fermentation products. RESULTS: An n-butanol pathway was inserted into a Synechocystis mutant deficient in polyhydroxybutyrate synthesis. We found that nitrogen starvation increased specific butanol productivity up to threefold, but cessation of cell growth limited total n-butanol titers. Metabolite profiling showed that acetyl-CoA increased twofold during nitrogen starvation. Introduction of a phosphoketolase increased acetyl-CoA levels sixfold at nitrogen replete conditions and increased butanol titers from 22 to 37 mg/L at day 8. Flux balance analysis of photoautotrophic metabolism showed that a Calvin-Benson-Bassham-Phosphoketolase pathway had higher theoretical butanol productivity than CBB-Embden-Meyerhof-Parnas and a reduced butanol ATP demand. CONCLUSION: These results demonstrate that phosphoketolase overexpression and modulation of nitrogen levels are two attractive routes toward increased production of acetyl-CoA derived products in cyanobacteria and could be implemented with complementary metabolic engineering strategies.


Assuntos
1-Butanol/metabolismo , Acetilcoenzima A/metabolismo , Synechocystis/metabolismo , 1-Butanol/química , Trifosfato de Adenosina/metabolismo , Aldeído Liases/genética , Aldeído Liases/metabolismo , Biomassa , Engenharia Metabólica , Metaboloma , NAD/química , NAD/metabolismo , Nitrogênio/metabolismo
12.
Mol Cell Proteomics ; 11(12): 1790-800, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22984286

RESUMO

Antibodies empower numerous important scientific, clinical, diagnostic, and industrial applications. Ideally, the epitope(s) targeted by an antibody should be identified and characterized, thereby establishing antibody reactivity, highlighting possible cross-reactivities, and perhaps even warning against unwanted (e.g. autoimmune) reactivities. Antibodies target proteins as either conformational or linear epitopes. The latter are typically probed with peptides, but the cost of peptide screening programs tends to prohibit comprehensive specificity analysis. To perform high-throughput, high-resolution mapping of linear antibody epitopes, we have used ultrahigh-density peptide microarrays generating several hundred thousand different peptides per array. Using exhaustive length and substitution analysis, we have successfully examined the specificity of a panel of polyclonal antibodies raised against linear epitopes of the human proteome and obtained very detailed descriptions of the involved specificities. The epitopes identified ranged from 4 to 12 amino acids in size. In general, the antibodies were of exquisite specificity, frequently disallowing even single conservative substitutions. In several cases, multiple distinct epitopes could be identified for the same target protein, suggesting an efficient approach to the generation of paired antibodies. Two alternative epitope mapping approaches identified similar, although not necessarily identical, epitopes. These results show that ultrahigh-density peptide microarrays can be used for linear epitope mapping. With an upper theoretical limit of 2,000,000 individual peptides per array, these peptide microarrays may even be used for a systematic validation of antibodies at the proteomic level.


Assuntos
Anticorpos/análise , Mapeamento de Epitopos/métodos , Epitopos/análise , Sequência de Aminoácidos , Animais , Anticorpos/química , Anticorpos/imunologia , Epitopos/química , Epitopos/imunologia , Humanos , Peptídeos/imunologia , Análise Serial de Proteínas , Proteoma/imunologia , Coelhos
13.
Commun Biol ; 7(1): 805, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38961245

RESUMO

Precise epitope determination of therapeutic antibodies is of great value as it allows for further comprehension of mechanism of action, therapeutic responsiveness prediction, avoidance of unwanted cross reactivity, and vaccine design. The golden standard for discontinuous epitope determination is the laborious X-ray crystallography method. Here, we present a combinatorial method for rapid mapping of discontinuous epitopes by mammalian antigen display, eliminating the need for protein expression and purification. The method is facilitated by automated workflows and tailored software for antigen analysis and oligonucleotide design. These oligos are used in automated mutagenesis to generate an antigen receptor library displayed on mammalian cells for direct binding analysis by flow cytometry. Through automated analysis of 33930 primers an optimized single condition cloning reaction was defined allowing for mutation of all surface-exposed residues of the receptor binding domain of SARS-CoV-2. All variants were functionally expressed, and two reference binders validated the method. Furthermore, epitopes of three novel therapeutic antibodies were successfully determined followed by evaluation of binding also towards SARS-CoV-2 Omicron BA.2. We find the method to be highly relevant for rapid construction of antigen libraries and determination of antibody epitopes, especially for the development of therapeutic interventions against novel pathogens.


Assuntos
COVID-19 , Mapeamento de Epitopos , Epitopos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Mapeamento de Epitopos/métodos , Epitopos/imunologia , Epitopos/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , COVID-19/imunologia , COVID-19/virologia , Biblioteca de Peptídeos , Anticorpos Antivirais/imunologia , Animais , Células HEK293 , Técnicas de Visualização da Superfície Celular/métodos , Biblioteca Gênica
14.
N Biotechnol ; 79: 120-126, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159596

RESUMO

Cancer immunotherapy, where a patient's immune system is harnessed to eradicate cancer cells selectively, is a leading strategy for cancer treatment. However, successes with immune checkpoint inhibitors (ICI) are hampered by reported systemic and organ-specific toxicities and by two-thirds of the patients being non-responders or subsequently acquiring resistance to approved ICIs. Hence substantial efforts are invested in discovering novel targeted immunotherapies aimed at reduced side-effects and improved potency. One way is utilizing the dual targeting feature of bispecific antibodies, which have made them increasingly popular for cancer immunotherapy. Easy and predictive screening methods for activation ranking of candidate drugs in tumor contra non-tumor environments are however lacking. Herein, we present a cell-based assay mimicking the tumor microenvironment by co-culturing B cells with engineered human embryonic kidney 293 T cells (HEK293T), presenting a controllable density of platelet-derived growth factor receptor ß (PDGFRß). A target density panel with three different surface protein levels on HEK293T cells was established by genetic constructs carrying regulatory elements limiting RNA translation of PDGFRß. We employed a bispecific antibody-affibody construct called an AffiMab capable of binding PDGFRß on cancer cells and CD40 expressed by B cells as a model. Specific activation of CD40-mediated signaling of immune cells was demonstrated with the two highest receptor-expressing cell lines, Level 2/3 and Level 4, while low-to-none in the low-expressing cell lines. The concept of receptor tuning and the presented co-culture protocol may be of general utility for assessing and developing novel bi-specific antibodies for immuno-oncology applications.


Assuntos
Anticorpos Biespecíficos , Neoplasias , Humanos , Linfócitos T , Técnicas de Cocultura , Células HEK293 , Neoplasias/tratamento farmacológico , Microambiente Tumoral
15.
J Proteome Res ; 12(6): 2439-48, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23276153

RESUMO

A gene-centric Human Proteome Project has been proposed to characterize the human protein-coding genes in a chromosome-centered manner to understand human biology and disease. Here, we report on the protein evidence for all genes predicted from the genome sequence based on manual annotation from literature (UniProt), antibody-based profiling in cells, tissues and organs and analysis of the transcript profiles using next generation sequencing in human cell lines of different origins. We estimate that there is good evidence for protein existence for 69% (n = 13985) of the human protein-coding genes, while 23% have only evidence on the RNA level and 7% still lack experimental evidence. Analysis of the expression patterns shows few tissue-specific proteins and approximately half of the genes expressed in all the analyzed cells. The status for each gene with regards to protein evidence is visualized in a chromosome-centric manner as part of a new version of the Human Protein Atlas ( www.proteinatlas.org ).


Assuntos
Anticorpos/química , Cromossomos Humanos/química , Projeto Genoma Humano , Proteínas de Neoplasias/isolamento & purificação , Neoplasias/química , Proteoma/isolamento & purificação , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Microscopia de Fluorescência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
MAbs ; 15(1): 2223750, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37332119

RESUMO

CD40 agonism by systemic administration of CD40 monoclonal antibodies has been explored in clinical trials for immunotherapy of cancer, uncovering enormous potential, but also dosing challenges in terms of systemic toxicity. CD40-dependent activation of antigen presenting cells is dependent on crosslinking of the CD40 receptor. Here we exploited this requisite by coupling crosslinking to cancer-receptor density by dual-targeting of CD40 and platelet-derived growth factor receptor beta (PDGFRB), which is highly expressed in the stroma of various types of tumors. A novel PDGFRBxCD40 Fc-silenced bispecific AffiMab was developed to this end to test whether it is possible to activate CD40 in a PDGFRB-targeted manner. A PDGFRB-binding Affibody molecule was fused to each heavy chain of an Fc-silenced CD40 agonistic monoclonal antibody to obtain a bispecific "AffiMab". Binding of the AffiMab to both PDGFRB and CD40 was confirmed by surface plasmon resonance, bio-layer interferometry and flow cytometry, through analysis of cells expressing respective target. In a reporter assay, the AffiMab displayed increased CD40 potency in the presence of PDGFRB-conjugated beads, in a manner dependent on PDGFRB amount/bead. To test the concept in immunologically relevant systems with physiological levels of CD40 expression, the AffiMab was tested in human monocyte-derived dendritic cells (moDCs) and B cells. Expression of activation markers was increased in moDCs specifically in the presence of PDGFRB-conjugated beads upon AffiMab treatment, while the Fc-silenced CD40 mAb did not stimulate CD40 activation. As expected, the AffiMab did not activate moDCs in the presence of unconjugated beads. Finally, in a co-culture experiment, the AffiMab activated moDCs and B cells in the presence of PDGFRB-expressing cells, but not in co-cultures with PDGFRB-negative cells. Collectively, these results suggest the possibility to activate CD40 in a PDGFRB-targeted manner in vitro. This encourages further investigation and the development of such an approach for the treatment of solid cancers.


Assuntos
Neoplasias , Receptor beta de Fator de Crescimento Derivado de Plaquetas , Humanos , Antígenos CD40 , Anticorpos Monoclonais , Monócitos/metabolismo
17.
Protein Eng Des Sel ; 362023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-37702366

RESUMO

Selection by phage display is a popular and widely used technique for the discovery of recombinant protein binders from large protein libraries for therapeutic use. The protein library is displayed on the surface of bacteriophages which are amplified using bacteria, preferably Escherichia coli, to enrich binders in several selection rounds. Traditionally, the so-called panning procedure during which the phages are incubated with the target protein, washed and eluted is done manually, limiting the throughput. High-throughput systems with automated panning already in use often require high-priced equipment. Moreover, the bottleneck of the selection process is usually the screening and characterization. Therefore, having a high-throughput panning procedure without a scaled screening platform does not necessarily increase the discovery rate. Here, we present an easy-to-use high-throughput selection system with automated panning using cost-efficient equipment integrated into a workflow with high-throughput sequencing and a tailored screening step using biolayer-interferometry. The workflow has been developed for selections using two recombinant libraries, ADAPT (Albumin-binding domain-derived affinity proteins) and CaRA (Calcium-regulated affinity) and has been evaluated for three new targets. The newly established semi-automated system drastically reduced the hands-on time and increased robustness while the selection outcome, when compared to manual handling, was very similar in deep sequencing analysis and generated binders in the nanomolar affinity range. The developed selection system has shown to be highly versatile and has the potential to be applied to other binding domains for the discovery of new protein binders.


Assuntos
Bacteriófagos , Biblioteca de Peptídeos , Bacteriófagos/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Técnicas de Visualização da Superfície Celular , Escherichia coli/genética , Escherichia coli/metabolismo
18.
N Biotechnol ; 72: 159-167, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36450334

RESUMO

Protein activity regulated by interactions with metal ions can be utilized for many different purposes, including biological therapies and bioprocessing, among others. Calcium ions are known to interact with the frequently occurring EF-hand motif, which can alter protein activity upon binding through an induced conformational change. The calcium-binding loop of the EF-hand motif has previously been introduced into a small protein domain derived from staphylococcal Protein A in a successful effort to render antibody binding dependent on calcium. Presented here, is a combinatorial library for calcium-regulated affinity, CaRA, based on this domain. CaRA is the first alternative scaffold library designed to achieve novel target specificities with metal-dependent binding. From this library, several calcium-dependent binders could be isolated through phage display campaigns towards a set of unrelated target proteins (IgE Cε3-Cε4, TNFα, IL23, scFv, tPA, PCSK9 and HER3) useful for distinct applications. Overall, these monomeric CaRA variants showed high stability and target affinities within the nanomolar range. They displayed considerably higher melting temperatures in the presence of 1 mM calcium compared to without calcium. Further, all discovered binders proved to be calcium-dependent, with the great majority showing complete lack of target binding in the absence of calcium. As demonstrated, the CaRA library is highly capable of providing protein-binding domains with calcium-dependent behavior, independent of the type of target protein. These binding domains could subsequently be of great use in gentle protein purification or as novel therapeutic modalities.


Assuntos
Bacteriófagos , Pró-Proteína Convertase 9 , Biblioteca de Peptídeos , Cálcio , Ligação Proteica
19.
N Biotechnol ; 68: 68-76, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35123066

RESUMO

Aggregation of therapeutic bispecific antibodies negatively affects the yield, shelf-life, efficacy and safety of these products. Pairs of stable Chinese hamster ovary (CHO) cell lines produced two difficult-to-express bispecific antibodies with different levels of aggregated product (10-75% aggregate) in a miniaturised bioreactor system. Here, transcriptome analysis was used to interpret the biological causes for the aggregation and to identify strategies to improve product yield and quality. Differential expression- and gene set analysis revealed upregulated proteasomal degradation, unfolded protein response and autophagy processes to be correlated with reduced protein aggregation. Fourteen candidate genes with the potential to reduce aggregation were co-expressed in the stable clones for validation. Of these, HSP90B1, DDIT3, AKT1S1, and ATG16L1, were found to significantly lower aggregation in the stable producers and two (HSP90B1 and DNAJC3) increased titres of the anti-HER2 monoclonal antibody trastuzumab by 50% during transient expression. It is suggested that this approach could be of general use for defining aggregation bottlenecks in CHO cells.


Assuntos
Anticorpos Biespecíficos , Animais , Anticorpos Biespecíficos/metabolismo , Autofagia , Células CHO , Cricetinae , Cricetulus , Biologia de Sistemas
20.
Cell Rep ; 39(11): 110936, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705050

RESUMO

Recombinant protein production can cause severe stress on cellular metabolism, resulting in limited titer and product quality. To investigate cellular and metabolic characteristics associated with these limitations, we compare HEK293 clones producing either erythropoietin (EPO) (secretory) or GFP (non-secretory) protein at different rates. Transcriptomic and functional analyses indicate significantly higher metabolism and oxidative phosphorylation in EPO producers compared with parental and GFP cells. In addition, ribosomal genes exhibit specific expression patterns depending on the recombinant protein and the production rate. In a clone displaying a dramatically increased EPO secretion, we detect higher gene expression related to negative regulation of endoplasmic reticulum (ER) stress, including upregulation of ATF6B, which aids EPO production in a subset of clones by overexpression or small interfering RNA (siRNA) knockdown. Our results offer potential target pathways and genes for further development of the secretory power in mammalian cell factories.


Assuntos
Estresse do Retículo Endoplasmático , Eritropoetina , Animais , Estresse do Retículo Endoplasmático/fisiologia , Eritropoetina/genética , Eritropoetina/metabolismo , Células HEK293/metabolismo , Humanos , Mamíferos/metabolismo , Transporte Proteico , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA