RESUMO
As global change processes modify the extent and functions of terrestrial-aquatic interfaces, the variability of critical and dynamic transitional zones between wetlands and uplands increases. However, it is still unclear how fluctuating water levels at these dynamic boundaries alter groundwater biogeochemical cycling. Here, we used high-temporal resolution data along gradients from wetlands to uplands and during fluctuating water levels at freshwater coastal areas to capture spatiotemporal patterns of groundwater redox potential (Eh). We observed that topography influences groundwater Eh that is higher in uplands than in wetlands; however, the high variability within TAI zones challenged the establishment of distinct redox zonation. Declining water levels generally decreased Eh, but most locations exhibited significant Eh variability, which is associated with rare instances of short-term water level fluctuations, introducing oxygen. The Eh-oxygen relationship showed distinct hysteresis patterns, reflecting redox poising capacity at higher Eh, maintaining more oxidizing states longer than the dissolved oxygen presence. Surprisingly, we observed more frequent oxidizing states in transitional areas and wetlands than in uplands. We infer that occasional oxygen entering specific wetland-upland boundaries acts as critical biogeochemical control points. High-resolution data can capture such rare yet significant biogeochemical instances, supporting redox-informed models and advancing the predictability of climate change feedback.
Assuntos
Água Subterrânea , Oxirredução , Áreas Alagadas , Água Subterrânea/químicaRESUMO
Rapid expansion in biomass production for biofuels and bioenergy in the Americas is increasing demand on the ecosystem resources required to sustain soil and site productivity. We review the current state of knowledge and highlight gaps in research on biogeochemical processes and ecosystem sustainability related to biomass production. Biomass production systems incrementally remove greater quantities of organic matter, which in turn affects soil organic matter and associated carbon and nutrient storage (and hence long-term soil productivity) and off-site impacts. While these consequences have been extensively studied for some crops and sites, the ongoing and impending impacts of biomass removal require management strategies for ensuring that soil properties and functions are sustained for all combinations of crops, soils, sites, climates, and management systems, and that impacts of biomass management (including off-site impacts) are environmentally acceptable. In a changing global environment, knowledge of cumulative impacts will also become increasingly important. Long-term experiments are essential for key crops, soils, and management systems because short-term results do not necessarily reflect long-term impacts, although improved modeling capability may help to predict these impacts. Identification and validation of soil sustainability indicators for both site prescriptions and spatial applications would better inform commercial and policy decisions. In an increasingly inter-related but constrained global context, researchers should engage across inter-disciplinary, inter-agency, and international lines to better ensure the long-term soil productivity across a range of scales, from site to landscape.
Assuntos
Agricultura/métodos , Biocombustíveis , Conservação de Recursos Energéticos , Produtos Agrícolas , Agricultura/tendências , América , Biomassa , Ecossistema , Agricultura Florestal , Solo/químicaRESUMO
Both granular activated carbon (GAC) and silver mordenite (AgM) are utilized for the removal of contaminants and radionuclides (e.g., radioiodine) from off-gas streams in nuclear fuel reprocessing and high temperature immobilization of nuclear waste. Following their service lifetimes, the GAC and AgM contain an inventory of contaminants and radionuclides and require stabilization in a matrix for disposal. GAC and AgM are referred to as solid secondary waste (SSW) materials. Cementitious waste forms can be used as the stabilization matrix for SSW, however, for successful stabilization, the inclusion of GAC and AgM should not negatively impact the physical behavior of the cementitious waste form or increase release of the contaminants/radionuclides compared to the baseline case without stabilization. The present work focuses on evaluation of cement formulations, with and without slag, for the stabilization of iodine-loaded GAC or AgM. The results showed that both a slag-containing and slag-free formulations were able to stabilize GAC and AgM, up to 30 vol%, without deleterious impacts on the bulk physical properties of the encapsulating matrix. When monolithic samples of the GAC or AgM containing cement formulations were subjected to leach tests, it was observed that iodide leached from the SSW) had limited sorption to either of the cement matrices. Nonetheless, the iodine can interact with the SSW materials themselves. Specifically, iodine retention within monolithic samples containing the iodine-loaded GAC or AgM was improved for AgM containing waste forms while no improvement was observed for the GAC containing waste forms. The improvement for the AgM containing waste forms was likely due to an enrichment of Ag at the interface between the AgM particles and the cement matrix that can impede iodine migration out from the waste form. The results are significant in highlighting the potential for long-term retention of iodine in specific cementitious waste forms.
Assuntos
Iodo , Monitoramento de Radiação , Silicatos de Alumínio , Carvão Vegetal , Iodetos , Radioisótopos do Iodo , PrataRESUMO
We investigated the effects of water saturation and secondary precipitate formation on Sr and Cs transport through quartz sand columns under saturated and unsaturated flow. Column experiments were conducted at effective water saturation ranging from 0.2 to 1.0 under steady-state flow using either 0.1 M NaNO(3) or simulated tank waste leachate (STWL; 1 M NaNO(3) and 1 M NaOH) mimicking Hanford (Washington, USA) tank waste. In 0.1 M NaNO(3) columns, Sr transported like a conservative tracer, whereas Cs was retarded relative to Sr. The transport of Sr and Cs in the 0.1 M NaNO(3) columns under all water saturations could be described with the equilibrium convection-dispersion equation (CDE). In STWL columns, Sr mobility was significantly reduced compared to the 0.1 M NaNO(3) column, because Sr was incorporated into or sorbed to neo-formed secondary precipitates. Strontium sequestration by precipitates was confirmed by additional batch and electron micrograph analyses. In contrast(,) the transport of Cs was less affected by the STWL; retardation of Cs in STWL columns was similar to that found in 0.1 M NaNO(3) columns. Analysis of STWL column data revealed that both Sr and Cs breakthrough curves showed nonideal behavior that suggest nonequilibrium conditions, although nonlinear geochemical behavior cannot be ruled out.
Assuntos
Césio/química , Quartzo/química , Poluentes Radioativos/química , Estrôncio/química , Poluentes Químicos da Água/química , Césio/análise , Modelos Químicos , Poluentes Radioativos/análise , Dióxido de Silício , Estrôncio/análise , Água/química , Movimentos da Água , Poluentes Químicos da Água/análiseRESUMO
Relative permeability is an important attribute influencing subsurface multiphase flow. Characterization of relative permeability is necessary to support activities such as carbon sequestration, geothermal energy production, and oil and gas exploration. Previous research efforts have largely neglected the relative permeability of wellbore cement used to seal well bores where risks of leak are significant. Therefore this study was performed to evaluate fracturing on permeability and relative permeability of wellbore cement. Studies of relative permeability of water and air were conducted using ordinary Portland cement paste cylinders having fracture networks that exhibited a range of permeability values. The measured relative permeability was compared with three models, 1) Corey-curve, often used for modeling relative permeability in porous media, 2) X-curve, commonly used to represent relative permeability of fractures, and 3) Burdine model based on fitting the Brooks-Corey function to fracture saturation-pressure data inferred from x-ray computed tomography (XCT) derived aperture distribution results. Experimentally-determined aqueous relative permeability was best described by the Burdine model. Though water phase tended to follow the Corey-curve for the simple fracture system while air relative permeability was best described by the X-curve.
Assuntos
Materiais de Construção , Água/química , PorosidadeRESUMO
Motivated by recent advances in self-healing cement and epoxy polymer composites, we present a combined ab initio molecular dynamics and sum frequency generation (SFG) vibrational spectroscopy study of a calcium-silicate-hydrate/polymer interface. On stable, low-defect surfaces, the polymer only weakly adheres through coordination and hydrogen bonding interactions and can be easily mobilized toward defected surfaces. Conversely, on fractured surfaces, the polymer strongly anchors through ionic Ca-O bonds resulting from the deprotonation of polymer hydroxyl groups. In addition, polymer S-S groups are turned away from the cement-polymer interface, allowing for the self-healing function within the polymer. The overall elasticity and healing properties of these composites stem from a flexible hydrogen bonding network that can readily adapt to surface morphology. The theoretical vibrational signals associated with the proposed cement-polymer interfacial chemistry were confirmed experimentally by SFG vibrational spectroscopy.
RESUMO
Despite remediation efforts at the former nuclear weapons facility, leaching of uranium (U) from contaminated sediments to the ground water persists at the Hanford site 300 Area. Flooding of contaminated capillary fringe sediments due to seasonal changes in the Columbia River stage has been identified as a source for U supply to ground water. We investigated U release from Hanford capillary fringe sediments by packing sediments into reservoirs of centrifugal filter devices and saturating them with Columbia River water for 3 to 84days at varying solution-to-solid ratios. After specified times, samples were centrifuged. Within the first three days, there was an initial rapid release of 6-9% of total U, independent of the solution-to-solid ratio. After 14days of reaction, however, the experiments with the narrowest solution-to-solid ratios showed a decline in dissolved U concentrations. The removal of U from the solution phase was accompanied by removal of Ca and HCO(3)(-). Geochemical modeling indicated that calcite could precipitate in the narrowest solution-to-solid ratio experiment. After the rapid initial release in the first three days for the wide solution-to-solid ratio experiments, there was sustained release of U into the pore water. This sustained release of U from the sediments had diffusion-limited kinetics.