Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7884): 234-238, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34759363

RESUMO

Propane dehydrogenation (PDH) to propene is an important alternative to oil-based cracking processes, to produce this industrially important platform chemical1,2. The commercial PDH technologies utilizing Cr-containing (refs. 3,4) or Pt-containing (refs. 5-8) catalysts suffer from the toxicity of Cr(VI) compounds or the need to use ecologically harmful chlorine for catalyst regeneration9. Here, we introduce a method for preparation of environmentally compatible supported catalysts based on commercial ZnO. This metal oxide and a support (zeolite or common metal oxide) are used as a physical mixture or in the form of two layers with ZnO as the upstream layer. Supported ZnOx species are in situ formed through a reaction of support OH groups with Zn atoms generated from ZnO upon reductive treatment above 550 °C. Using different complementary characterization methods, we identify the decisive role of defective OH groups for the formation of active ZnOx species. For benchmarking purposes, the developed ZnO-silicalite-1 and an analogue of commercial K-CrOx/Al2O3 were tested in the same setup under industrially relevant conditions at close propane conversion over about 400 h on propane stream. The developed catalyst reveals about three times higher propene productivity at similar propene selectivity.

3.
Chem Soc Rev ; 50(1): 473-527, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33205797

RESUMO

Conversion of propane or butanes from natural/shale gas into propene or butenes, which are indispensable for the synthesis of commodity chemicals, is an important environmentally friendly alternative to oil-based cracking processes. Herein, we critically analyse recent developments in the non-oxidative, oxidative, and CO2-mediated dehydrogenation of propane and isobutane to the corresponding olefins over metal oxide catalysts. Particular attention is paid to (i) comparing the developed catalysts in terms of their application potential, (ii) structure-activity-selectivity relationships for tailored catalyst design, and (iii) reaction-engineering aspects for improving product selectivity and overall process efficiency. On this basis, possible directions for further research aimed at the development of inexpensive and environmentally friendly catalysts with industrially relevant performance were identified. In addition, we provide general information regarding catalyst preparation and characterization as well as some recommendations for carrying out non-oxidative and CO2-mediated dehydrogenation reactions to ensure unambiguous comparison of catalysts developed in different studies.

4.
Angew Chem Int Ed Engl ; 54(52): 15880-3, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26566072

RESUMO

Non-oxidative dehydrogenation of propane to propene is an established large-scale process that, however, faces challenges, particularly in catalyst development; these are the toxicity of chromium compounds, high cost of platinum, and catalyst durability. Herein, we describe the design of unconventional catalysts based on bulk materials with a certain defect structure, for example, ZrO2 promoted with other metal oxides. Comprehensive characterization supports the hypothesis that coordinatively unsaturated Zr cations are the active sites for propane dehydrogenation. Their concentration can be adjusted by varying the kind of ZrO2 promoter and/or supporting tiny amounts of hydrogenation-active metal. Accordingly designed Cu(0.05 wt %)/ZrO2 -La2 O3 showed industrially relevant activity and durability over ca. 240 h on stream in a series of 60 dehydrogenation and oxidative regeneration cycles between 550 and 625 °C.

5.
J Am Chem Soc ; 134(51): 20624-7, 2012 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-23228076

RESUMO

Preparing highly active and stable non-noble-metal-based dry reforming catalysts remains a challenge today. In this context, supported nickel nanoparticles with sizes of 1.3 ± 0.2 and 2.1 ± 0.2 nm were synthesized on silica and ceria, respectively, via a two-step colloidal approach. First, 2-nm nickel-silicide colloids were synthesized from Ni(COD)(2) and octylsilane at low temperature; they were subsequently dispersed onto supports prior to reduction under H(2). The resulting catalysts display high activity in dry reforming compared to their analogues prepared using conventional approaches, ceria providing greatly improved catalyst stability.

6.
Nat Commun ; 9(1): 3794, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30228314

RESUMO

Due to the complexity of heterogeneous catalysts, identification of active sites and the ways for their experimental design are not inherently straightforward but important for tailored catalyst preparation. The present study reveals the active sites for efficient C-H bond activation in C1-C4 alkanes over ZrO2 free of any metals or metal oxides usually catalysing this reaction. Quantum chemical calculations suggest that two Zr cations located at an oxygen vacancy are responsible for the homolytic C-H bond dissociation. This pathway differs from that reported for other metal oxides used for alkane activation, where metal cation and neighbouring lattice oxygen form the active site. The concentration of anion vacancies in ZrO2 can be controlled through adjusting the crystallite size. Accordingly designed ZrO2 shows industrially relevant activity and durability in non-oxidative propane dehydrogenation and performs superior to state-of-the-art catalysts possessing Pt, CrOx, GaOx or VOx species.

8.
Chem Commun (Camb) ; 52(82): 12222-12225, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27711441

RESUMO

Bare alumina shows surprisingly high activity in non-oxidative dehydrogenation of isobutane to isobutylene. The activity is related to surface coordinatively unsaturated Al sites (Alcus), which are created upon removal of OH groups during alumina treatment at high temperatures. Alcus and neighbouring lattice oxygen represent the active site for isobutane dehydrogenation.

9.
Chem Commun (Camb) ; 52(52): 8164-7, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27277540

RESUMO

Bulk binary ZrO2-based oxides efficiently catalyse non-oxidative dehydrogenation of isobutane to isobutylene. Their activity strongly depends on the kind of second metal oxide. So designed CrZrOx showed superior activity to industrially relevant catalysts with supported Pt or CrOx species. It was also stable under alternating dehydrogenation and oxidative regeneration cycles over ca. 110 h under different reaction conditions between 550 and 600 °C.

10.
J Chem Inf Model ; 48(2): 274-82, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18254615

RESUMO

This paper deals with the key optimization task that has to be solved when improving the performance of many chemical processes--optimization of the catalysts used in the reaction via the optimization of its composition and preparation. A novel approach is presented that allows for the preservation of the advantages of genetic algorithms developed specifically for the optimization of catalytic materials but avoids the disadvantageous necessity to reimplement the algorithm when the scope of the optimized materials changes. Its main idea is to automatically generate problem-tailored implementations from requirements concerning the materials with a program generator. For the specification of such requirements, a formal description language, called catalyst description language, has been developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA