Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Macromol Rapid Commun ; 41(3): e1900484, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31859420

RESUMO

A novel capability built upon secondary electron (SE) spectroscopy provides an enhanced cross-linking characterization toolset for polymeric biomaterials, with cross-linking density and variation captured at a multiscale level. The potential of SE spectroscopy for material characterization has been investigated since 1947. The absence of suitable instrumentation and signal processing proved insurmountable barriers to applying SE spectroscopy to biomaterials, and consequently, capturing SE spectra containing cross-linking information is a new concept. To date, cross-linking extent is inferred from analytical techniques such as nuclear magnetic resonance (NMR), differential scanning calorimetry, and Raman spectroscopy (RS). NMR provides extremely localized information on the atomic scale and molecular scale, while RS information volume is on the microscale. Other methods for the indirect study of cross-linking are bulk mechanical averaging methods, such as tensile and compression modulus testing. However, these established averaging methods for the estimation of polymer cross-linking density are incomplete because they fail to provide information of spatial distributions within the biomaterial morphology across all relevant length scales. The efficacy of the SE spectroscopy capability is demonstrated in this paper by the analysis of poly(glycerol sebacate)-methacrylate (PGS-M) at different degrees of methacrylation delivering new insights into PGS-M morphology.


Assuntos
Materiais Biocompatíveis/química , Decanoatos/química , Glicerol/análogos & derivados , Metacrilatos/química , Microscopia Eletrônica de Varredura , Polímeros/química , Glicerol/química , Teste de Materiais , Análise Espectral Raman , Resistência à Tração , Engenharia Tecidual
2.
JOM (1989) ; 69(11): 2278-2285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31983865

RESUMO

Plasma-etched nanoclay-reinforced Polyamide 12 (PA12) powder is prepared with its intended use in selective laser sintering (LS) applications. To replicate the LS process we present a downward heat sintering (DHS) process, carried out in a hot press, to fabricate tensile test specimens from the composite powders. The DHS parameters are optimized through hot stage microscopy, which reveal that the etched clay (EC)-based PA12 (EC/PA12) nanocomposite powder melts at a temperature 2°C higher than that of neat PA12, and 1-3°C lower than that of the nonetched clay-based nanocompsite (NEC/PA12 composite). We show that these temperature differences are critical to successful LS. The distribution of EC and NEC onto PA12 is investigated by scanning electron microscopy (SEM). SEM images show clearly that the plasma treatment prevents the micron-scale aggregation of the nanoclay, resulting in an improved elastic modulus of EC/PA12 when compared with neat PA12 and NEC/PA12. Moreover, the reduction in elongation at break for EC/PA12 is less pronounced than for NEC/PA12.

3.
Nanotechnology ; 27(19): 195302, 2016 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-27040079

RESUMO

A flexible and efficient method to fabricate nanopores in graphene has been developed. A focused, low-energy (5 keV) electron beam was used to locally activate etching of a graphene surface in a low pressure (0.3 Pa) N2 environment. Nanopores with sub-5 nm diameters were fabricated. The lattice structure of the graphene was observed to recover within 20 nm of the nanopore edge. Nanopore growth rates were investigated systematically. The effects of nitrogen pressure, electron beam dwell time and beam current were characterised in order to understand the etching mechanism and enable optimisation of the etching parameters. A model was developed which describes how the diffusion of ionised nitrogen affects the nanopore growth rate. Etching of other two-dimensional materials was attempted as demonstrated with MoS2. The lack of etching observed supports our model of a chemical reaction-based mechanism. The understanding of the etching mechanism will allow more materials to be etched by selection of an appropriate ion species.

4.
Soft Matter ; 11(38): 7567-7578, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26280624

RESUMO

For the first time a series of functional hydrogels based on semi-interpenetrating networks with both branched and crosslinked polymer components have been prepared and we show the successful use of these materials as substrates for cell culture. The materials consist of highly branched poly(N-isopropyl acrylamide)s with peptide functionalised end groups in a continuous phase of crosslinked poly(vinyl pyrrolidone). Functionalisation of the end groups of the branched polymer component with the GRGDS peptide produces a hydrogel that supports cell adhesion and proliferation. The materials provide a new synthetic functional biomaterial that has many of the features of extracellular matrix, and as such can be used to support tissue regeneration and cell culture. This class of high water content hydrogel material has important advantages over other functional hydrogels in its synthesis and does not require post-processing modifications nor are functional-monomers, which change the polymerisation process, required. Thus, the systems are amenable to large scale and bespoke manufacturing using conventional moulding or additive manufacturing techniques. Processing using additive manufacturing is exemplified by producing tubes using microstereolithography.


Assuntos
Acrilamidas/química , Arginina/química , Ácido Aspártico/química , Materiais Biocompatíveis/química , Glicina/química , Hidrogéis/química , Oligopeptídeos/química , Adesão Celular , Ensaios de Migração Celular , Proliferação de Células , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos
5.
Biomater Adv ; 159: 213800, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377947

RESUMO

Currently, in vitro testing examines the cytotoxicity of biomaterials but fails to consider how materials respond to mechanical forces and the immune response to them; both are crucial for successful long-term implantation. A notable example of this failure is polypropylene mid-urethral mesh used in the treatment of stress urinary incontinence (SUI). The mesh was largely successful in abdominal hernia repair but produced significant complications when repurposed to treat SUI. Developing more physiologically relevant in vitro test models would allow more physiologically relevant data to be collected about how biomaterials will interact with the body. This study investigates the effects of mechanochemical distress (a combination of oxidation and mechanical distention) on polypropylene mesh surfaces and the effect this has on macrophage gene expression. Surface topology of the mesh was characterised using SEM and AFM; ATR-FTIR, EDX and Raman spectroscopy was applied to detect surface oxidation and structural molecular alterations. Uniaxial mechanical testing was performed to reveal any bulk mechanical changes. RT-qPCR of selected pro-fibrotic and pro-inflammatory genes was carried out on macrophages cultured on control and mechanochemically distressed PP mesh. Following exposure to mechanochemical distress the mesh surface was observed to crack and craze and helical defects were detected in the polymer backbone. Surface oxidation of the mesh was seen after macrophage attachment for 7 days. These changes in mesh surface triggered modified gene expression in macrophages. Pro-fibrotic and pro-inflammatory genes were upregulated after macrophages were cultured on mechanochemically distressed mesh, whereas the same genes were down-regulated in macrophages exposed to control mesh. This study highlights the relationship between macrophages and polypropylene surgical mesh, thus offering more insight into the fate of an implanted material than existing in vitro testing.


Assuntos
Telas Cirúrgicas , Incontinência Urinária por Estresse , Humanos , Teste de Materiais , Telas Cirúrgicas/efeitos adversos , Polipropilenos/química , Materiais Biocompatíveis , Macrófagos , Incontinência Urinária por Estresse/cirurgia
6.
Adv Sci (Weinh) ; 11(10): e2306561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145339

RESUMO

Palladium films hold signicance due to their remarkable affinity for hydrogen diffusion, rendering them valauble for the seperation and purification of hydrogen in membrane reactors. However, palladium is expensive, and its films can become brittle after only a few cycles of hydrogen separation. Alloying with silver has been shown to overcome the problem of palladium embrittlement. Palladium-silver films have been produced via several methods but all have drawbacks, such as difficulties controlling the alloy composition. This study explores two promising jet printing methods: Inkjet and Aerosoljet. Both methods offer potential advantages such as direct patterning, which reduces waste, enables thin film production, and allows for the control of alloy composition. For the first time, palladium-silver alloys have been produced via inkjet printing using a palladium-silver metal organic decomposition (MOD) ink, which alloys at a temperature of 300 °C with nitrogen. Similarly, this study also demonstrates a pioneering approach for Aerosol Jet printing, showing the potential of a novel room-temperature method, for the deposition of palladium-silver MOD inks. This low temperature approach is considered an important development as palladium-silver MOD inks are originally designed for deposition on heated substrates.

7.
Nano Lett ; 11(10): 4275-81, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21923098

RESUMO

We use helium ion microscopy (HeIM) to image the nanostructure of poly(3-hexylthiophene)/[6,6]-phenyl-C(61)-butric acid methyl ester (P3HT/PCBM) blend thin-films. Specifically, we study a blend thin-film subject to a thermal anneal at 140 °C and use a plasma-etching technique to gain access to the bulk of the blend thin-films. We observe a domain structure within the bulk of the film that is not apparent at the film-surface and tentatively identify a network of slightly elongated PCBM domains having a spatial periodicity of (20 ± 4) nm a length of (12 ± 8) nm.

8.
Sci Rep ; 12(1): 18496, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323762

RESUMO

We demonstrate a new technique for producing Polymer Dispersed Liquid Crystal (PDLC) devices utilising aerosol jet printing (AJP). PDLCs require two substrates to act as scaffold for the Indium Tin Oxide electrodes, which restricts the device geometries. Our approach precludes the requirement for the second substrate by printing the electrode directly onto the surface of the PDLC, which is also printed. The process has the potential to be precursory to the implementation of non-contact printing techniques for a variety of liquid crystal-based devices on non-planar substrates. We report the demonstration of direct deposition of PDLC films onto non-planar optical surfaces, including a functional device printed over the 90° edge of a prism. Scanning Electron Microscopy is used to inspect surface features of the polymer electrodes and the liquid crystal domains in the host polymer. The minimum relaxation time of the PDLC was measured at 1.3 ms with an 800 Hz, 90 V, peak-to-peak (Vpp) applied AC field. Cross-polarised transmission is reduced by up to a factor of 3.9. A transparent/scattering contrast ratio of 1.4 is reported between 0 and 140 V at 100 Hz.

9.
Micron ; 156: 103234, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35325668

RESUMO

Powder materials are used in all corners of materials science, from additive manufacturing to energy storage. Scanning electron microscopy (SEM) has developed to meet morphological, microstructural and bulk chemical powder characterization requirements. These include nanoscale elemental analysis and high-throughput morphological assays. However, spatially localized powder surface chemical information with similar resolution to secondary electron (SE) imaging is not currently available in the SEM. Recently, energy filtered (EF-) SEM has been used for surface chemical characterization by secondary electron hyperspectral imaging (SEHI). This review provides a background to existing powder characterization capabilities in the low voltage SEM provided by SE imaging, EDX analysis and BSE imaging and sets out how these capabilities could be extended for surface chemical analysis by applying SEHI to powders, with particular emphasis on air and beam sensitive powder surfaces. Information accessible by SEHI, its advantages and limitations, is set into the context of other chemical characterization methods that are commonly used for assessing powder surface chemistry such as by Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS). The applicability of existing powder preparation methods for SEM to SEHI is also reviewed. An alternative preparation method is presented alongside first examples of SEHI characterization of powder surfaces. The commercial powder materials used as examples were carbon-fiber/polyamide composite powder feedstock (CarbonMide®) used in additive manufacturing and powders consisting of lithium nickel cobalt oxide (NMC). SEHI is shown to differentiate bonding present at carbonaceous material surfaces and extract information about the work function of metal oxide surfaces. The surface sensitivity of SEHI is indicated by comparison of pristine powders to those with surface material added in preparation. A minimum spatial localization of chemical information of 55 nm was achieved in differentiating regions of NMC surface chemistry by distinct SE spectra.


Assuntos
Elétrons , Imageamento Hiperespectral , Microscopia Eletrônica de Varredura , Espectroscopia Fotoeletrônica , Pós/química
10.
Microsc Microanal ; 17(4): 637-42, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21745435

RESUMO

As the miniaturization of semiconductor devices continues, characterization of dopant distribution within the structures becomes increasingly challenging. One potential solution is the use of the secondary electron signal produced in scanning electron (SEMs) or helium ion microscopes (HeIMs) to image the changes in electrical potential caused by the dopant atoms. In this article, the contrast mechanisms and resolution limits of secondary electron dopant contrast are explored. It is shown that the resolution of the technique is dependent on the extent of electrical potential present at a junction and that the resolution of dopant contrast can be improved in the HeIM after an in-situ plasma cleaning routine, which causes an oxide to form on the surface altering the contrast mechanism from electrical potential to material contrast.

11.
Materials (Basel) ; 14(11)2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34199625

RESUMO

It is well known that carbon present in scanning electron microscopes (SEM), Focused ion beam (FIB) systems and FIB-SEMs, causes imaging artefacts and influences the quality of TEM lamellae or structures fabricated in FIB-SEMs. The severity of such effects depends not only on the quantity of carbon present but also on its bonding state. Despite this, the presence of carbon and its bonding state is not regularly monitored in FIB-SEMs. Here we demonstrated that Secondary Electron Hyperspectral Imaging (SEHI) can be implemented in different FIB-SEMs (ThermoFisher Helios G4-CXe PFIB and Helios Nanolab G3 UC) and used to observe carbon built up/removal and bonding changes resulting from electron/ion beam exposure. As well as the ability to monitor, this study also showed the capability of Plasma FIB Xe exposure to remove carbon contamination from the surface of a Ti6246 alloy without the requirement of chemical surface treatments.

12.
Adv Sci (Weinh) ; 8(4): 2003762, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33643809

RESUMO

Understanding the effects that sterilization methods have on the surface of a biomaterial is a prerequisite for clinical deployment. Sterilization causes alterations in a material's surface chemistry and surface structures that can result in significant changes to its cellular response. Here we compare surfaces resulting from the application of the industry standard autoclave sterilisation to that of surfaces resulting from the use of low-pressure Argon glow discharge within a novel gas permeable packaging method in order to explore a potential new biomaterial sterilisation method. Material surfaces are assessed by applying secondary electron hyperspectral imaging (SEHI). SEHI is a novel low-voltage scanning electron microscopy based characterization technique that, in addition to capturing topographical images, also provides nanoscale resolution chemical maps by utilizing the energy distribution of emitted secondary electrons. Here, SEHI maps are exploited to assess the lateral distributions of diverse functional groups that are effected by the sterilization treatments. This information combined with a range of conventional surface analysis techniques and a cellular metabolic activity assay reveals persuasive reasons as to why low-pressure argon glow discharge should be considered for further optimization as a potential terminal sterilization method for PGS-M, a functionalized form of poly(glycerol sebacate) (PGS).

13.
RSC Adv ; 11(55): 34710-34723, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-35494782

RESUMO

Polypropylene (PP) surgical mesh, used successfully for the surgical repair of abdominal hernias, is associated with serious clinical complications when used in the pelvic floor for repair of stress urinary incontinence or support of pelvic organ prolapse. While manufacturers claim that the material is inert and non-degradable, there is a growing body of evidence that asserts PP fibres are subject to oxidative damage and indeed explanted material from patients suffering with clinical complications has shown some evidence of fibre cracking and oxidation. It has been proposed that a pathological cellular response to the surgical mesh contributes to the medical complications; however, the mechanisms that trigger the specific host response against the material are not well understood. Specifically, this study was constructed to investigate the mechano-chemical effects of oxidation and dynamic distension on polypropylene surgical mesh. To do this we used a novel advanced spectroscopical characterisation technique, secondary electron hyperspectral imaging (SEHI), which is based on the collection of secondary electron emission spectra in a scanning electron microscope (SEM) to reveal mechanical-chemical reactions within PP meshes.

14.
Nat Commun ; 12(1): 3711, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140492

RESUMO

Silk fibre mechanical properties are attributed to the development of a multi-scale hierarchical structure during spinning. By careful ex vivo processing of a B. mori silkworm silk solution we arrest the spinning process, freezing-in mesoscale structures corresponding to three distinctive structure development stages; gelation, fibrilization and the consolidation phase identified in this work, a process highlighted by the emergence and extinction of 'water pockets'. These transient water pockets are a manifestation of the interplay between protein dehydration, phase separation and nanofibril assembly, with their removal due to nanofibril coalescence during consolidation. We modeled and validated how post-draw improves mechanical properties and refines a silk's hierarchical structure as a result of consolidation. These insights enable a better understanding of the sequence of events that occur during spinning, ultimately leading us to propose a robust definition of when a silkworm silk is actually 'spun'.


Assuntos
Bombyx/química , Bombyx/metabolismo , Fibroínas/química , Fibroínas/metabolismo , Seda/química , Seda/metabolismo , Animais , Fibroínas/ultraestrutura , Microscopia Eletrônica de Varredura , Porosidade , Conformação Proteica em Folha beta , Análise Espectral Raman , Água/química
15.
Nanomaterials (Basel) ; 10(8)2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32752054

RESUMO

This work establishes a tensegrity model of spider dragline silk. Tensegrity systems are ubiquitous in nature, being able to capture the mechanics of biological shapes through simple and effective modes of deformation via extension and contraction. Guided by quantitative microstructural characterization via air plasma etching and low voltage scanning electron microscopy, we report that this model is able to capture experimentally observed phenomena such as the Poisson effect, tensile stress-strain response, and fibre toughness. This is achieved by accounting for spider silks' hierarchical organization into microfibrils with radially variable properties. Each fibril is described as a chain of polypeptide tensegrity units formed by crystalline granules operating under compression, which are connected to each other by amorphous links acting under tension. Our results demonstrate, for the first time, that a radial variability in the ductility of tensegrity chains is responsible for high fibre toughness, a defining and desirable feature of spider silk. Based on this model, a discussion about the use of graded tensegrity structures for the optimal design of next-generation biomimetic fibres is presented.

16.
Microsc Microanal ; 15(3): 237-43, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19460180

RESUMO

The International Technology Roadmap for Semiconductors ranks dopant profiling as one of the most difficult challenges for analysis of semiconductors. Dopant mapping in the scanning electron microscope (SEM) has the potential to provide a solution. This technique has not yet found widespread application, however, mainly due to the lack of a comprehensive theoretical model, uncertain quantification, and its inability to differentiate doping levels in n-type silicon. Although a Monte Carlo model was recently published that closely matched experimental data obtained in p-doped silicon to data obtained from the theoretical model, a large discrepancy between experimental data obtained for n-type silicon was found. Here we present a Monte Carlo model that provides close matches between experimental and calculated data in both n- and p-type silicon, paving the way for a widespread application of SEM dopant contrast.

18.
Adv Sci (Weinh) ; 6(19): 1900719, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31592411

RESUMO

Carbon and carbon/metal systems with a multitude of functionalities are ubiquitous in new technologies but understanding on the nanoscale remains elusive due to their affinity for interaction with their environment and limitations in available characterization techniques. This paper introduces a spectroscopic technique and demonstrates its capacity to reveal chemical variations of carbon. The effectiveness of this approach is validated experimentally through spatially averaging spectroscopic techniques and using Monte Carlo modeling. Characteristic spectra shapes and peak positions for varying contributions of sp2-like or sp3-like bond types and amorphous hydrogenated carbon are reported under circumstances which might be observed on highly oriented pyrolytic graphite (HOPG) surfaces as a result of air or electron beam exposure. The spectral features identified above are then used to identify the different forms of carbon present within the metallic films deposited from reactive organometallic inks. While spectra for metals is obtained in dedicated surface science instrumentation, the complex relations between carbon and metal species is only revealed by secondary electron (SE) spectroscopy and SE hyperspectral imaging obtained in a state-of-the-art scanning electron microscope (SEM). This work reveals the inhomogeneous incorporation of carbon on the nanoscale but also uncovers a link between local orientation of metallic components and carbon form.

19.
Adv Sci (Weinh) ; 6(5): 1801752, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30886802

RESUMO

Understanding nanoscale molecular order within organic electronic materials is a crucial factor in building better organic electronic devices. At present, techniques capable of imaging molecular order within a polymer are limited in resolution, accuracy, and accessibility. In this work, presented are secondary electron (SE) spectroscopy and secondary electron hyperspectral imaging, which make an exciting alternative approach to probing molecular ordering in poly(3-hexylthiophene) (P3HT) with scanning electron microscope-enabled resolution. It is demonstrated that the crystalline content of a P3HT film is reflected by its SE energy spectrum, both empirically and through correlation with nano-Fourier-transform infrared spectroscopy, an innovative technique for exploring nanoscale chemistry. The origin of SE spectral features is investigated using both experimental and modeling approaches, and it is found that the different electronic properties of amorphous and crystalline P3HT result in SE emission with different energy distributions. This effect is exploited by acquiring hyperspectral SE images of different P3HT films to explore localized molecular orientation. Machine learning techniques are used to accurately identify and map the crystalline content of the film, demonstrating the power of an exciting characterization technique.

20.
ACS Appl Mater Interfaces ; 10(46): 39428-39434, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30411607

RESUMO

We use ultrasonic spray-coating to fabricate cesium-containing triple-cation perovskite solar cells with a power-conversion efficiency of up to 17.8%. Our fabrication route involves a brief exposure of the partially wet spray-cast films to a low vacuum, a process that is used to control film crystallization. We show that films that are not vacuum-exposed are relatively rough and inhomogeneous, while vacuum-exposed films are smooth and consist of small and densely packed perovskite crystals. The process techniques developed here represent a step toward a scalable and industrially compatible manufacturing process capable of creating stable and high-performance perovskite solar cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA