Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
PLoS One ; 19(8): e0305893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121087

RESUMO

During maturation oocytes at the germinal vesicle (GV) stage progress to metaphase II (MII). However, during in vitro maturation a proportion often fail to progress. To understand these processes, we employed RNA sequencing to examine the transcriptome profile of these three groups of oocytes from the pig. We compared our findings with similar public oocyte data from humans. The transcriptomes in oocytes that failed to progress was similar to those that did. We found in both species, the most upregulated genes in MII oocytes were associated with chromosome segregation and cell cycle processes, while the most down regulated genes were relevant to ribosomal and mitochondrial pathways. Moreover, those genes involved in chromosome segregation during GV to MII transition were conserved in pig and human. We also compared MII and GV oocyte transcriptomes at the isoform transcript level in both species. Several thousands of genes (including DTNBP1, MAPK1, RAB35, GOLGA7, ATP1A1 and ATP2B1) identified as not different in expression at a gene transcript level were found to have differences in isoform transcript levels. Many of these genes were involved in ATPase-dependent or GTPase-dependent intracellular transport in pig and human, respectively. In conclusion, our study suggests the failure to progress to MII in vitro may not be regulated at the level of the genome and that many genes are differentially regulated at the isoform level, particular those involved ATPase- or GTPase-dependent intracellular transport.


Assuntos
Metáfase , Oócitos , Humanos , Oócitos/metabolismo , Oócitos/citologia , Animais , Suínos , Feminino , Transcriptoma , Análise de Sequência de RNA , Oogênese/genética , Perfilação da Expressão Gênica
2.
PLoS One ; 19(8): e0308168, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39110703

RESUMO

The ovarian KGN granulosa-like tumour cell line is commonly used as a model for human granulosa cells, especially since it produces steroid hormones. To explore this further, we identified genes that were differentially expressed by KGN cells compared to primary human granulosa cells using three public RNA sequence datasets. Of significance, we identified that the expression of the antioxidant gene TXNRD1 (thioredoxin reductase 1) was extremely high in KGN cells. This is ominous since cytochrome P450 enzymes leak electrons and produce reactive oxygen species during the biosynthesis of steroid hormones. Gene Ontology (GO) analysis identified steroid biosynthetic and cholesterol metabolic processes were more active in primary granulosa cells, whilst in KGN cells, DNA processing, chromosome segregation and kinetochore pathways were more prominent. Expression of cytochrome P450 cholesterol side-chain cleavage (CYP11A1) and cytochrome P450 aromatase (CYP19A1), which are important for the biosynthesis of the steroid hormones progesterone and oestrogen, plus their electron transport chain members (FDXR, FDX1, POR) were measured in cultured KGN cells. KGN cells were treated with 1 mM dibutyryl cAMP (dbcAMP) or 10 µM forskolin, with or without siRNA knockdown of TXNRD1. We also examined expression of antioxidant genes, H2O2 production by Amplex Red assay and DNA damage by γH2Ax staining. Significant increases in CYP11A1 and CYP19A1 were observed by either dbcAMP or forskolin treatments. However, no significant changes in H2O2 levels or DNA damage were found. Knockdown of expression of TXNRD1 by siRNA blocked the stimulation of expression of CYP11A1 and CYP19A1 by dbcAMP. Thus, with TXNRD1 playing such a pivotal role in steroidogenesis in the KGN cells and it being so highly overexpressed, we conclude that KGN cells might not be the most appropriate model of primary granulosa cells for studying the interplay between ovarian steroidogenesis, reactive oxygen species and antioxidants.


Assuntos
Antioxidantes , Aromatase , Enzima de Clivagem da Cadeia Lateral do Colesterol , Células da Granulosa , Humanos , Feminino , Antioxidantes/metabolismo , Aromatase/genética , Aromatase/metabolismo , Linhagem Celular Tumoral , Células da Granulosa/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Tiorredoxina Redutase 1/metabolismo , Tiorredoxina Redutase 1/genética , Regulação Neoplásica da Expressão Gênica , Tumor de Células da Granulosa/genética , Tumor de Células da Granulosa/metabolismo , Tumor de Células da Granulosa/patologia , Esteroides/biossíntese , Progesterona/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia
3.
Reprod Fertil Dev ; 362024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38894494

RESUMO

Context Altered signalling of androgens, anti-Müllerian hormone or transforming growth factor beta (TGFß) during foetal development have been implicated in the predisposition to polycystic ovary syndrome (PCOS) in later life, aside from its genetic predisposition. In foetal ovarian fibroblasts, TGFß1 has been shown to regulate androgen signalling and seven genes located in loci associated with PCOS. Since PCOS exhibits a myriad of symptoms, it likely involves many different organs. Aims To identify the relationships between TGFß signalling molecules and PCOS candidate genes in different tissues associated with PCOS. Methods Using RNA sequencing data, we examined the expression patterns of TGFß signalling molecules in the human ovary, testis, heart, liver, kidney, brain tissue, and cerebellum from 4 to 20weeks of gestation and postnatally. We also examined the correlations between gene expression of TGFß signalling molecules and PCOS candidate genes. Key results TGFß signalling molecules were dynamically expressed in most tissues prenatally and/or postnatally. FBN3 , a PCOS candidate gene involved in TGFß signalling, was expressed during foetal development in all tissues. The PCOS candidate genes HMGA2, YAP1 , and RAD50 correlated significantly (P TGFBR1 in six out of the seven tissues examined. Conclusions This study suggests that possible crosstalk occurs between genes in loci associated with PCOS and TGFß signalling molecules in multiple tissues, particularly during foetal development. Implications Thus, alteration in TGFß signalling during foetal development could affect many tissues contributing to the multiple phenotypes of PCOS in later life.


Assuntos
Síndrome do Ovário Policístico , Transdução de Sinais , Fator de Crescimento Transformador beta , Humanos , Feminino , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/genética , Adulto , Ovário/metabolismo , Feto/metabolismo , Masculino , Gravidez , Regulação da Expressão Gênica no Desenvolvimento , Testículo/metabolismo , Testículo/embriologia , Fibrilinas
4.
Expert Opin Investig Drugs ; 33(3): 183-190, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38372052

RESUMO

INTRODUCTION: Type 2 diabetes (T2D) is metabolic disorder associated with a decrease in insulin activity and/or secretion from the ß-cells of the pancreas, leading to elevated circulating glucose. Current management practices for T2D are complex with varying long-term effectiveness. Agonism of the G protein-coupled receptor GPR119 has received a lot of recent interest as a potential T2D therapeutic. AREAS COVERED: This article reviews studies focused on GPR119 agonism in animal models of T2D and in patients with T2D. EXPERT OPINION: GPR119 agonists in vitro and in vivo can potentially regulate incretin hormone release from the gut, then pancreatic insulin release which regulates blood glucose concentrations. However, the success in controlling glucose homeostasis in rodent models of T2D and obesity, failed to translate to early-stage clinical trials in patients with T2D. However, in more recent studies, acute and chronic dosing with the GPR119 agonist DS-8500a had increased efficacy, although this compound was discontinued for further development. New trials on GPR119 agonists are needed, however it may be that the future of GPR119 agonists lie in the development of combination therapy with other T2D therapeutics.


Assuntos
Diabetes Mellitus Tipo 2 , Animais , Humanos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Incretinas , Insulina/metabolismo , Receptores Acoplados a Proteínas G/agonistas
5.
Reprod Fertil ; 5(3)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38990713

RESUMO

Abstract: Reactive oxygen species (ROS) are a by-product of the activity of cytochrome P450 steroidogenic enzymes. Antioxidant enzymes protect against ROS damage. To identify if any particular antioxidant enzyme is used to protect against ROS produced by granulosa cells as follicles enlarge and produce oestradiol, we measured in the bovine granulosa cells the expression of two steroidogenic enzymes (CYP11A1, CYP19A1), important for progesterone and oestradiol production. We also measured the expression of the members (FDXR, FDX1, POR) of their electron transport chains (ETC). We measured antioxidant enzymes (GPXs 1-8, CAT, SODs 1 and 2, PRDXs 1-6, GSR, TXN, TXNRDs 1-3). Since selenium is an active component of GPXs, the selenium-uptake receptors (LRPs 2 and 8) were measured. Only the selenium-dependent GPX1 showed the same increase in expression as the steroidogenic enzymes did with increasing follicle size. GPX4 and PRDX2/6 decreased with follicle size, whereas SOD1/2, CAT, GSR, and TXNRD3 were lowest at the intermediate sizes. The other antioxidant enzymes were unchanged or expressed at low levels. The expression of the selenium-uptake receptor LRP8 also increased significantly with follicle size. Correlation analysis revealed statistically significant and strongly positive correlations of the steroidogenic enzymes and their ETCs with both GPX1 and LRP8. These results demonstrate a relationship between the expression of genes involved in steroidogenesis and selenium-containing antioxidant defence mechanisms. They suggest that during the late stages of folliculogenesis, granulosa cells are dependent on sufficient expression of GPX1 and the selenium transporter LRP8 to counteract increasing ROS levels caused by the production of steroid hormones. Lay summary: In the ovary, eggs are housed in follicles which contain the cells that produce oestrogen in the days leading up to ovulation of the egg. Oestrogen is produced by the action of enzymes. However, some of these enzymes also produce by-products called reactive oxygen species (ROS). These are harmful to eggs. Fortunately, cells have protective antioxidant enzymes that can neutralise ROS. This study was interested in which particular antioxidant enzyme(s) might be involved in neutralising the ROS in follicle cells. It was found that only one antioxidant enzyme, GPX1, appeared to be co-regulated with the enzymes that produce oestrogen and progesterone in the follicular cells. GPX1 contains the essential mineral selenium. In summary, this study has identified which antioxidant appears to be involved in neutralising ROS in the days leading to ovulation. It highlights the importance of selenium in the diet.


Assuntos
Glutationa Peroxidase GPX1 , Glutationa Peroxidase , Células da Granulosa , Feminino , Células da Granulosa/metabolismo , Animais , Bovinos , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Selênio/metabolismo , Antioxidantes/metabolismo , Aromatase/metabolismo , Aromatase/genética , Enzima de Clivagem da Cadeia Lateral do Colesterol/metabolismo , Enzima de Clivagem da Cadeia Lateral do Colesterol/genética , Progesterona/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estradiol/metabolismo , Folículo Ovariano/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA