Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Am Chem Soc ; 145(1): 179-193, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36542802

RESUMO

We report the dimerization and oligomerization of ethylene using bis(phosphino)boryl supported Ni(II) complexes as catalyst precursors. By using alkylaluminum(III) compounds or other Lewis acid additives, Ni(II) complexes of the type (RPBP)NiBr (R = tBu or Ph) show activity for the production of butenes and higher olefins. Optimized turnover frequencies of 640 molethylene·molNi-1·s-1 for the formation of butenes with 41(1)% selectivity for 1-butene using (PhPBP)NiBr, and 68 molethylene·molNi-1·s-1 for butenes production with 87.2(3)% selectivity for 1-butene using (tBuPBP)NiBr, have been demonstrated. With methylaluminoxane as a co-catalyst and (tBuPBP)NiBr as the precatalyst, ethylene oligomerization to form C4 through C20 products was achieved, while the use of (PhPBP)NiBr as the pre-catalyst retained selectivity for C4 products. Our studies suggest that the ethylene dimerization is not initiated by Ni hydride or alkyl intermediates. Rather, our studies point to a mechanism that involves a cooperative B/Ni activation of ethylene to form a key 6-membered borametallacycle intermediate. Thus, a cooperative activation of ethylene by the Ni-B unit of the (RPBP)Ni catalysts is proposed as a key element of the Ni catalysis.

2.
Angew Chem Int Ed Engl ; 62(34): e202306315, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37399341

RESUMO

The synthesis and characterization of (tBu PBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni-C bond of (tBu PBP)NiMe (1) is presented. An unexpected CO2 cleavage process involving the formation of new B-O and Ni-CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBu PBOP)2 Ni4 (µ-CO)2 (6). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBu P2 BO)Ni-acyl intermediate (A) that leads to a (tBu P2 BO)-NiI complex (B) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBu P2 BO)NiII (η2 -TEMPO) (7). Additionally, 13 C and 1 H NMR spectroscopy analysis using 13 C-enriched CO2 provides information about the species involved in the CO2 activation process.

3.
Chemistry ; 23(1): 194-205, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813171

RESUMO

We describe the synthesis and the molecular and electronic structures of the complex [Mo2 Me2 {µ-HC(NDipp)2 }2 ] (2; Dipp=2,6-iPr2 C6 H3 ), which contains a dimetallic core with an Mo-Mo quadruple bond and features uncommon four-coordinate geometry and has a fourteen-electron count for each molybdenum atom. The coordination polyhedron approaches a square pyramid, with one of the molybdenum atoms nearly co-planar with the basal square plane, in which the trans coordination position with respect to the Mo-Me bond is vacant. The other three sites are occupied by two trans nitrogen atoms of different amidinate ligands and the methyl group. The second Mo atom occupies the apex of the pyramid and forms an Mo-Mo bond of length 2.080(1) Å, consistent with a quadruple bond. Compound 2 reacts with tetrahydrofuran (THF) and trimethylphosphine to yield the mono-adducts [Mo2 Me(µ-Me){µ-HC(NDipp)2 }2 (L)] (3⋅THF and 3⋅PMe3 , respectively) with one terminal and one bridging methyl group. In contrast, 4-dimethylaminopyridine (dmap) forms the bis-adduct [Mo2 Me2 {µ-HC(NDipp)2 }2 (dmap)2 ] (4), with terminally coordinated methyl groups. Hydrogenolysis of complex 2 leads to the bis(hydride) [Mo2 H2 {µ-HC(NDipp)2 }2 (thf)2 ] (5⋅THF) with elimination of CH4 . Computational, kinetic, and mechanistic studies, which included the use of D2 and of complex 2 labelled with 13 C (99 %) at the Mo-CH3 sites, supported the intermediacy of a methyl-hydride reactive species. A computational DFT analysis of the terminal and bridging coordination of the methyl groups to the Mo≣Mo core is also reported.

4.
Chemistry ; 22(47): 16791-16795, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27662609

RESUMO

The low-electron-count cationic platinum complex [Pt(ItBu')(ItBu)][BArF ], 1, interacts with primary and secondary silanes to form the corresponding σ-SiH complexes. According to DFT calculations, the most stable coordination mode is the uncommon η1 -SiH. The reaction of 1 with Et2 SiH2 leads to the X-ray structurally characterized 14-electron PtII species [Pt(SiEt2 H)(ItBu)2 ][BArF ], 2, which is stabilized by an agostic interaction. Complexes 1, 2, and the hydride [Pt(H)(ItBu)2 ][BArF ], 3, catalyze the hydrosilation of CO2 , leading to the exclusive formation of the corresponding silyl formates at room temperature.

5.
J Am Chem Soc ; 137(38): 12378-87, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26305709

RESUMO

New dimolybdenum complexes of composition [Mo2{µ-Me}2Li(S)}(µ-X)(µ-N^N)2] (3a-3c), where S = THF or Et2O and N^N represents a bidentate aminopyridinate or amidinate ligand that bridges the quadruply bonded molybdenum atoms, were prepared from the reaction of the appropriate [Mo2{µ-O2CMe}2(µ-N^N)2] precursors and LiMe. For complex 3a, X = MeCO2, while in 3b and 3c, X = Me. Solution NMR studies in C6D6 solvent support formulation of the complexes as contact ion pairs with weak agostic Mo-CH3···Li interactions, which were also evidenced by X-ray crystallography in the solid-state structures of the molecules of 3a and 3b. Samples of 3c enriched in (13)C (99%) at the metal-bonded methyl sites were also prepared and investigated by NMR spectroscopy employing C6D6 and THF-d8 solvents. Crystallization of 3c from toluene:tetrahydrofuran mixtures provided single crystals of the solvent separated ion pair complex [Li(THF)4] [Mo2(Me)2(µ-Me){µ-HC(NDipp)2}2] (4c), where Dipp stands for 2,6-iPr2C6H3. A computational analysis of the Mo2(µ-Me)2Li core of complexes 3a and 3b has been developed, which is consistent with a small but non-negligible electron-density sharing between the C and Li atoms of the mainly ionic CH3···Li interactions.

6.
Chemistry ; 21(1): 410-21, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25359541

RESUMO

To clarify the nature of the Mo-Carene interaction in terphenyl complexes with quadruple Mo-Mo bonds, ether adducts of composition [Mo2 (Ar')(I)(O2 CR)2 (OEt2)] have been prepared and characterized (Ar'=Ar(Xyl) 2 , R=Me; Ar'=ArMes2, R=Me; Ar'=Ar(Xyl2), R=CF3) (Mes=mesityl; Xyl=2,6-Me2 C6 H3, from now on xylyl) and their reactivity toward different neutral Lewis bases investigated. PMe3 , P(OMe)3 and PiPr3 were chosen as P-donors and the reactivity studies complemented with the use of the C-donors CNXyl and CN2 C2 Me4 (1,3,4,5-tetramethylimidazol-2-ylidene). New compounds of general formula [Mo2 (Ar')(I)(O2 CR)2 (L)] were obtained, except for the imidazol-2-ylidene ligand that yielded a salt-like compound of composition [Mo2 (Ar(Xyl2))(O2 CMe)2 (CN2 C2 Me4)2]I. The Mo-Carene interaction in these complexes has been analyzed with the aid of X-ray data and computational studies. This interaction compensates the coordinative and electronic unsaturation of one of the Mo atoms in the above complexes, but it seems to be weak in terms of sharing of electron density between the Mo and Carene atoms and appears to have no appreciable effect in the length of the Mo-Mo, Mo-X, and Mo-L bonds present in these molecules.

7.
J Am Chem Soc ; 136(25): 9173-80, 2014 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-24874837

RESUMO

Mono- and bis-terphenyl complexes of molybdenum and tungsten with general composition M2(Ar')(O2CR)3 and M2(Ar')2(O2CR)2, respectively (Ar' = terphenyl ligand), that contain carboxylate groups bridging the quadruply bonded metal atoms, have been prepared and structurally characterized. The new compounds stem from the reactions of the dimetal tetracarboxylates, M2(O2CR)4 (M = Mo, R = H, Me, CF3; M = W, R = CF3) with the lithium salts of the appropriate terphenyl groups (Ar' = Ar(Xyl2), Ar(Mes2), Ar(Dipp2), and Ar(Trip2)). Substitution of one bidentate carboxylate by a monodentate terphenyl forms a M-C σ bond and creates a coordination unsaturation at the other metal atom. Hence in M2(Ar')2(O2CR)2 complexes the two metal atoms have formally a low coordination number and an also low electron count. However, the unsaturation seems to be compensated by a weak M-C(arene) bonding interaction that implicates one of the aryl substituents of the terphenyl central aryl ring, as revealed by X-ray studies performed with some of these complexes and by theoretical calculations.

8.
Chemistry ; 20(20): 6092-102, 2014 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-24729468

RESUMO

The bis(hydride) dimolybdenum complex, [Mo2(H)2{HC(N-2,6-iPr2C6H3)2}2(thf)2], 2, which possesses a quadruply bonded Mo2(II) core, undergoes light-induced (365 nm) reductive elimination of H2 and arene coordination in benzene and toluene solutions, with formation of the Mo(I)2 complexes [Mo2{HC(N-2,6-iPr2C6H3)2}2(arene)], 3⋅C6H6 and 3⋅C6H5Me, respectively. The analogous C6H5OMe, p-C6H4Me2, C6H5F, and p-C6H4F2 derivatives have also been prepared by thermal or photochemical methods, which nevertheless employ different Mo2 complex precursors. X-ray crystallography and solution NMR studies demonstrate that the molecule of the arene bridges the molybdenum atoms of the Mo(I)2 core, coordinating to each in an η(2) fashion. In solution, the arene rotates fast on the NMR timescale around the Mo2-arene axis. For the substituted aromatic hydrocarbons, the NMR data are consistent with the existence of a major rotamer in which the metal atoms are coordinated to the more electron-rich C-C bonds.

9.
Chem Sci ; 13(25): 7392-7418, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35872827

RESUMO

In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.

10.
Inorg Chem ; 50(13): 6361-71, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21648450

RESUMO

Attempts to prepare mixed-ligand zinc-zinc-bonded compounds that contain bulky C(5)Me(5) and terphenyl groups, [Zn(2)(C(5)Me(5))(Ar')], lead to disproportionation. The resulting half-sandwich Zn(II) complexes [(η(5)-C(5)Me(5))ZnAr'] (Ar' = 2,6-(2,6-(i)Pr(2)C(6)H(3))(2)-C(6)H(3), 2; 2,6-(2,6-Me(2)C(6)H(3))(2)-C(6)H(3), 3) can also be obtained from the reaction of [Zn(C(5)Me(5))(2)] with the corresponding LiAr'. In the presence of pyr-py (4-pyrrolidinopyridine) or DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), [Zn(2)(η(5)-C(5)Me(5))(2)] reacts with C(5)Me(5)OH to afford the tetrametallic complexes [Zn(2)(η(5)-C(5)Me(5))L(µ-OC(5)Me(5))](2) (L = pyr-py, 6; DBU, 8), respectively. The bulkier terphenyloxide Ar(Mes)O(-) group (Ar(Mes) = 2,6-(2,4,6-Me(3)C(6)H(2))(2)-C(6)H(3)) gives instead the dimetallic compound [Zn(2)(η(5)-C(5)Me(5))(OAr(Mes))(pyr-py)(2)], 7, that features a terminal Zn-OAr(Mes) bond. DFT calculations on models of 6-8 and also on the Zn-Zn-bonded complexes [Zn(2)(η(5)-C(5)H(5))(OC(5)H(5))(py)(2)] and [(η(5)-C(5)H(5))ZnZn(py)(3)](+) have been performed and reveal the nonsymmetric nature of the Zn-Zn bond with lower charge and higher participation of the s orbital of the zinc atom coordinated to the cyclopentadienyl ligand with respect to the metal within the pseudo-ZnL(3) fragment. Cyclic voltammetric studies on [Zn(2)(η(5)-C(5)Me(5))(2)] have been also carried out and the results compared with the behavior of [Zn(C(5)Me(5))(2)] and related magnesium and calcium metallocenes.

11.
Chem Commun (Camb) ; 56(40): 5333-5349, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32373864

RESUMO

Platinum complexes have been often considered as the least reactive of the group 10 triad metals. Slow kinetics are behind this lack of reactivity but, still, some industrially relevant catalytic process are dominated by platinum compounds and sometimes different selectivities can be found in comparison to Ni or Pd. Nevertheless, during the last years, it has been reported that the catalytic behaviour of well-defined platinum derivatives can be improved through a judicious choice of their electronic and steric properties, leading to highly electrophilic or low-electron count platinum systems. In this feature article, we highlight some catalytic processes in which well-defined electrophilic platinum complexes or coordinatively unsaturated systems play an important role in their catalytic activity.

12.
Chem Sci ; 12(7): 2540-2548, 2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34164022

RESUMO

The concept of metal-ligand cooperation opens new avenues for the design of catalytic systems that may offer alternative reactivity patterns to the existing ones. Investigations of this concept with ligands bearing a boron center in their skeleton established mechanistic pathways for the activation of small molecules in which the boron atom usually performs as an electrophile. Here, we show how this electrophilic behavior can be modified by the ligand trans to the boron center, evincing its ambiphilic nature. Treatment of diphosphinoboryl (PBP) nickel-methyl complex 1 with bis(catecholato)diboron (B2Cat2) allows for the synthesis of nickel(ii) bis-boryl complex 3 that promotes the clean and reversible heterolytic cleavage of dihydrogen leading to the formation of dihydroborate nickel complex 4. Density functional theory analysis of this reaction revealed that the heterolytic activation of H2 is facilitated by the cooperation of both boryl moieties and the metal atom in a concerted mechanism that involves a Ni(ii)/Ni(0)/Ni(ii) process. Contrary to 1, the boron atom from the PBP ligand in 3 behaves as a nucleophile, accepting a formally protic hydrogen, whereas the catecholboryl moiety acts as an electrophile, receiving the attack from the hydride-like fragment. This manifests the dramatic change in the electronic properties of a ligand by tuning the substituent trans to it and constitutes an unprecedented cooperative mechanism that involves two boryl ligands in the same molecule operating differently, one as a Lewis acid and the other one as a Lewis base, in cooperation with the metal. In addition, reactivity towards different nucleophiles such as amines or ammonia confirmed the electrophilic nature of the Bcat moiety, allowing the formation of aminoboranes.

13.
Heliyon ; 6(9): e04809, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32984576

RESUMO

Networked digital narratives are developed in a society marked by distrust in meta-narratives, liquidity and tension between Mass Media and New Media. This research aims to delve into these narratives from the creators' perspective, analyzing new formats, authors and creative processes that are put into practice. For that purpose, the applied methodology combines in-depth interviews with creators with discourse analysis, and arts based research with the technique of the research journal. The results reveal an overflow of the classical conception of narrative, a trend towards convergence, and the dominance of visual and sequential creative thinking over alphabetical-continuous thinking. It also shows a series of clues for the creation of digital narratives: interactivity, hypermedia, transmedia, virtuality and connectivity. Finally, we highlight that creators do not have preestablished guidelines and follow the procedure of trial and error for the construction of their narratives.

14.
Chemistry ; 15(4): 924-35, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19065696

RESUMO

New zincocenes [ZnCp'(2)] (2-5) with substituted cyclopentadienyl ligands C(5)Me(4)H, C(5)Me(4)tBu, C(5)Me(4)SiMe(2)tBu and C(5)Me(4)SiMe(3), respectively, have been prepared by the reaction of ZnCl(2) with the appropriate Cp'-transfer reagent. For a comparative structural study, the known [Zn(C(5)H(4)SiMe(3))(2)] (1), has also been investigated, along with the mixed-ring zincocenes [Zn(C(5)Me(5))(C(5)Me(4)SiMe(3))] (6) and [Zn(C(5)Me(5))(C(5)H(4)SiMe(3))] (7), the last two obtained by conproportionation of [Zn(C(5)Me(5))(2)] with 5 or 1, as appropriate. All new compounds were characterised by NMR spectroscopy, and by X-ray methods, with the exception of 7, which yields a side-product (C) upon attempted crystallisation. Compounds 5 and 6 were also investigated by (13)C CPMAS NMR spectroscopy. Zincocenes 1 and 2 have infinite chain structures with bridging Cp' ligands, while 3 and 4 exhibit slipped-sandwich geometries. Compounds 5 and 6 have rigid, eta(5)/eta(1)(sigma) structures, in which the monohapto C(5)Me(4)SiMe(3) ligand is bound to zinc through the silyl-bearing carbon atom, forming a Zn--C bond of comparable strength to the Zn--Me bond in ZnMe(2). Zincocene 5 has dynamic behaviour in solution, but a rigid eta(5)/eta(1)(sigma) structure in the solid state, as revealed by (13)C CPMAS NMR studies, whereas for 6 the different nature of the Cp' ligands and of the ring substituents of the eta(1)-Cp' group (Me and SiMe(3)) have permitted observation for the first time of the rigid eta(5)/eta(1) solution structure. Iminoacyl compounds of composition [Zn(eta(5)-C(5)Me(4)R)(eta(1)-C(NXyl)C(5)Me(4)R)] resulting from the reactions of some of the above zincocenes and CNXyl (Xyl=2,6-dimethylphenylisocyanide) have also been obtained and characterised.

15.
Life (Basel) ; 9(1)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813538

RESUMO

Microbial cooperation pervades ecological scales, from single-species populations to host-associated microbiomes. Understanding the mechanisms promoting the stability of cooperation against potential threats by cheaters is a major question that only recently has been approached experimentally. Synthetic biology has helped to uncover some of these basic mechanisms, which were to some extent anticipated by theoretical predictions. Moreover, synthetic cooperation is a promising lead towards the engineering of novel functions and enhanced productivity of microbial communities. Here, we review recent progress on engineered cooperation in microbial ecosystems. We focus on bottom-up approaches that help to better understand cooperation at the population level, progressively addressing the challenges of tackling higher degrees of complexity: spatial structure, multispecies communities, and host-associated microbiomes. We envisage cooperation as a key ingredient in engineering complex microbial ecosystems.

16.
J Phys Chem A ; 112(42): 10516-25, 2008 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-18821745

RESUMO

The measured Raman and IR spectra of solid, polycrystalline bis(pentamethylcyclopentadienyl)dizinc, (eta(5)-C5Me5)2Zn2, 1, and bis(pentamethylcyclopentadienyl)monozinc, (eta(5)-C5Me5)(eta(1)-C5Me5)Zn, 8, are reported in some detail. The IR spectra of the vapors of 1 and 8 each trapped in a solid Ar matrix at 12 K confirm the essentially molecular character of the solids. The experimental results have been interpreted with particular reference (i) to the corresponding spectra of (68)Zn-enriched samples of the compounds, and (ii) to the spectra simulated by density functional theory (DFT) calculations at the B3LYP level. The marked differences of structure of 1 and 8 contrast with the relatively close similarity of their vibrational spectra, disparities being revealed only on detailed scrutiny, including the effects of (68)Zn enrichment, and primarily at wavenumbers below 1000 cm(-1). The Zn-Zn stretching motion of 1 features not as a single, well-defined mode identifiable with intense Raman scattering but in several normal modes which respond in varying degrees to (68)Zn substitution. A stretching force constant of 1.42 mdyne A(-1) has been estimated for the Zn-Zn bond of 1.


Assuntos
Compostos Organometálicos/química , Análise Espectral Raman/métodos , Zinco/química , Simulação por Computador , Modelos Químicos , Compostos Organometálicos/síntese química , Teoria Quântica , Espectrofotometria Infravermelho/métodos
18.
R Soc Open Sci ; 5(7): 180121, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109068

RESUMO

Ecosystems are complex systems, currently experiencing several threats associated with global warming, intensive exploitation and human-driven habitat degradation. Because of a general presence of multiple stable states, including states involving population extinction, and due to the intrinsic nonlinearities associated with feedback loops, collapse in ecosystems could occur in a catastrophic manner. It has been recently suggested that a potential path to prevent or modify the outcome of these transitions would involve designing synthetic organisms and synthetic ecological interactions that could push these endangered systems out of the critical boundaries. In this paper, we investigate the dynamics of the simplest mathematical models associated with four classes of ecological engineering designs, named Terraformation motifs (TMs). These TMs put in a nutshell different ecological strategies. In this context, some fundamental types of bifurcations pervade the systems' dynamics. Mutualistic interactions can enhance persistence of the systems by means of saddle-node bifurcations. The models without cooperative interactions show that ecosystems achieve restoration through transcritical bifurcations. Thus, our analysis of the models allows us to define the stability conditions and parameter domains where these TMs must work.

19.
Chem Commun (Camb) ; 52(10): 2114-7, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26692373

RESUMO

The selective reduction of CO2 to the formaldehyde level remains an important challenge and to date only a few catalysts have been developed for this reaction. Herein, we report an efficient catalyst that consists of a bis(phosphino)boryl nickel hydride complex in combination with B(C6F5)3, for the highly selective hydrosilation of CO2 to bis(silyl)acetal derivatives.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA