Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

País/Região como assunto
País de afiliação
Intervalo de ano de publicação
1.
J Food Sci Technol ; 60(9): 2401-2407, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37424583

RESUMO

This study aimed to evaluate the feasibility of using sugar-sweetened beverages (SSB) for citric acid (CA) production and its impact on chemical oxygen demand (COD) of SSB. Five types of SSB were used as a carbon source for CA production by A. niger, and the COD of each SSB was measured before and after the bioprocess. Results showed that all tested SSB were suitable for CA production, with maximum yields ranging from 13.01 to 56.62 g L- 1. The COD was reduced from 53 to 75.64%, indicating that the bioprocess effectively treated SSB wastes. The use of SSB as a substrate for CA production provides an alternative to traditional feedstocks, such as sugarcane and beet molasses. The low-cost and high availability of SSB makes it an attractive option for CA production. Moreover, the study demonstrated the potential of the bioprocess to simultaneously treat and reuse SSB wastes, reducing the environmental impact of the beverage industry. Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-023-05761-9.

2.
Biotechnol Lett ; 43(1): 89-98, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33064227

RESUMO

OBJECTIVE: This work aimed at evaluating the influence of organic solvents and stationary phases in the extraction with glass beads and chromatographic purification of carotenoids, especially torularhodin, from Sporobolomyces ruberrimus. RESULTS: The combinations of acetone:hexane (1:1 v/v) and acetone:ethyl ether (1:1 v/v) yielded 171.74 and 172.19 µg of total carotenoids.g of cells-1, respectively. The first blend resulted in the highest percent of cell lysis of 57.4%. Among different proportions of acetone:hexane, the 9:1 v/v mixture showed a significant difference (p < 0.05), resulting in a recovery of total carotenoids of 221.88 µg.g of cells-1. The purification of carotenoids was made by preparative chromatography and the yield of the silica-containing stationary phase was higher (24 µg torularhodin.g cells-1). The analyses of the purified fractions in thin layer chromatography and high performance liquid chromatography indicated that the purification of carotenoids, especially of torularhodin, was successfully performed. CONCLUSIONS: The combination of polar (acetone) and non-polar solvents (hexane) and the use of silica as stationary phase was efficient to recover and purify torularhodin from the intracellular pigments of Sporobolomyces ruberrimus.


Assuntos
Basidiomycota/química , Carotenoides/isolamento & purificação , Solventes/química , Acetona/química , Carotenoides/química , Cromatografia Líquida , Hexanos/química
3.
Food Microbiol ; 93: 103608, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32912581

RESUMO

Cocoa beans used for chocolate production are fermented seeds of Theobroma cacao obtained by a natural fermentation process. The flavors and chemical compounds produced during the fermentation process make this step one of the most important in fine chocolate production. Herein, an integrative analysis of the variation of microbial community structure, using a shotgun metagenomics approach and associated physicochemical features, was performed during fermentation of fine cocoa beans. Samples of Forastero variety (FOR) and a mixture of two hybrids (PS1319 and CCN51) (MIX) from Bahia, Brazil, were analyzed at 7 different times. In the beginning (0 h), the structures of microbial communities were very different between FOR and MIX, reflecting the original plant-associated microbiomes. The highest change in microbial community structures occurred at the first 24 h of fermentation, with a marked increase in temperature and acetic acid concentration, and pH decrease. At 24-48 h both microbial community structures were quite homogenous regarding temperature, acetic acid, succinic acid, pH, soluble proteins and total phenols. During 72-96 h, the community structure resembles an acidic and warmer environment, prevailing few acetic acid bacteria. Taxonomic richness and abundance at 72-144 h exhibited significant correlation with temperature, reducing sugars, succinic, and acetic acids. Finally, we recommend that dominant microbial species of spontaneous fine cocoa fermentations should be considered as inoculum in accordance with the farm/region and GMP to maintain a differential organoleptic feature for production of fine chocolate. In our study, a starter inoculum composed of Acetobacter pausterianus and Hanseniaspora opuntiae strains is indicated.


Assuntos
Cacau/microbiologia , Fermentação , Alimentos Fermentados , Microbiologia de Alimentos , Metagenômica/métodos , Ácido Acético/metabolismo , Acetobacter/metabolismo , Bactérias/metabolismo , Brasil , Chocolate , Aromatizantes , Hanseniaspora/genética , Hanseniaspora/metabolismo , Microbiota/genética , Sementes/microbiologia
4.
Biotechnol Appl Biochem ; 67(5): 723-731, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31545870

RESUMO

Second-generation bioethanol production process was developed using pretreated empty fruit bunches (EFB). Consecutive acid/alkali EFB pretreatment was performed, first with HCl and then with NaOH with final washing steps for phenolic compounds elimination. Scanning electron microscopy images showed that EFB chemical treatments indeed attacked the cellulose fibers and removed the silica from surface pores. The optimization of enzymatic hydrolysis of EFB's cellulosic fraction was performed with 0.5%-4% v/v of Cellic® CTec2/Novozymes, different EFB concentrations (5%-15%, w/v), and hydrolysis time (6-72 H). Optimization essays were carried out in Erlenmeyer flasks and also in a 1 L stirred tank reactor. After enzymatic hydrolysis, a hydrolysate with 66 g/L of glucose was achieved with 2.2% (v/v) Cellic® CTec2, 15% (m/v) acid/alkaline pretreated EFB after 39 H of hydrolysis. A gain of 11.2% was then obtained in the 1 L stirred tank promoted by the agitation (72.2 g/L glucose). The hydrolysate was employed in bioethanol production by a new isolate Candida pelliculosa CCT 7734 in a separate hydrolysis and fermentation process reaching 16.6 and 23.0 g/L of bioethanol through batch and fed-batch operation, respectively. An integrated biorefinery process was developed for EFB processing chain.


Assuntos
Arecaceae/metabolismo , Biocombustíveis , Etanol/metabolismo , Saccharomycetales/metabolismo , Biocatálise , Biocombustíveis/análise , Biocombustíveis/microbiologia , Celulose/metabolismo , Etanol/análise , Fermentação , Frutas/metabolismo , Hidrólise , Microbiologia Industrial
5.
Planta ; 248(5): 1049-1062, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30069731

RESUMO

MAIN CONCLUSION: Gibberellic acid is a plant growth hormone that promotes cell expansion and division. Studies have aimed at optimizing and reducing production costs, which could make its application economically viable for different cultivars. Gibberellins consist of a large family of plant growth hormones discovered in the 1930s, which are synthesized via the terpenes route from the geranylgeranyl diphosphate and feature a basic structure formed by an ent-gibberellane tetracyclic skeleton. Among them, only four have biological activity, including gibberellic acid (GA3), which acts as a natural plant growth regulator, especially for stem elongation, seed germination, and increased fruit size. It can be obtained from plants, fungi, and bacteria. There are also some reports about microalgae GA3 producers. Fungi, especially Gibberella fujikuroi, are preferred for GA3 production via submerged fermentation or solid-state fermentation. Many factors may affect its production, some of which are related to the control and scale-up of fermentation parameters. Different GA3 products are available on the market. They can be found in liquid or solid formulations containing only GA3 or a mixture of other biological active gibberellins, which can be applied on a wide variety of cultivars, including crops and fruits. However, the product's cost still limits its large and continuous application. New low-cost and efficient GA3 production alternatives are surely welcome. This review deals with the latest scientific and technological advances on production, recovery, formulation, and applications of this important plant growth hormone.


Assuntos
Giberelinas/síntese química , Reguladores de Crescimento de Plantas/síntese química , Biotecnologia/métodos , Fermentação , Giberelinas/química , Giberelinas/isolamento & purificação , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/isolamento & purificação
6.
Biotechnol Adv ; 70: 108300, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38101553

RESUMO

In recent decades, environmental concerns have directed several policies, investments, and production processes. The search for sustainable and eco-friendly strategies is constantly increasing to reduce petrochemical product utilization, fossil fuel pollution, waste generation, and other major ecological impacts. The concepts of circular economy, bioeconomy, and biorefinery are increasingly being applied to solve or reduce those problems, directing us towards a greener future. Within the biotechnology field, the Bacillus genus of bacteria presents extremely versatile microorganisms capable of producing a great variety of products with little to no dependency on petrochemicals. They are able to grow in different agro-industrial wastes and extreme conditions, resulting in healthy and environmentally friendly products, such as foods, feeds, probiotics, plant growth promoters, biocides, enzymes, and bioactive compounds. The objective of this review was to compile the variety of products that can be produced with Bacillus cells, using the concepts of biorefinery and circular economy as the scope to search for greener alternatives to each production method and providing market and bioeconomy ideas of global production. Although the genus is extensively used in industry, little information is available on its large-scale production, and there is little current data regarding bioeconomy and circular economy parameters for the bacteria. Therefore, as this work gathers several products' economic, production, and environmentally friendly use information, it can be addressed as one of the first steps towards those sustainable strategies. Additionally, an extensive patent search was conducted, focusing on products that contain or are produced by the Bacillus genus, providing an indication of global technology development and direction of the bacteria products. The Bacillus global market represented at least $18 billion in 2020, taking into account only the products addressed in this article, and at least 650 patent documents submitted per year since 2017, indicating this market's extreme importance. The data we provide in this article can be used as a base for further studies in bioeconomy and circular economy and show the genus is a promising candidate for a greener and more sustainable future.


Assuntos
Bacillus , Resíduos Industriais , Alimentos , Biotecnologia , Biocombustíveis
7.
World J Microbiol Biotechnol ; 29(12): 2317-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23760557

RESUMO

Citric acid (CA) is one of the most important products of fermentation in the world. A great variety of agro-industrial residues can be used in solid state fermentation. Aspergillus niger parental strain (CCT 7716) and two strains obtained by mutagenesis (CCT 7717 and CCT 7718) were evaluated in Erlenmeyer flasks and glass columns using citric pulp (CP) as substrate/support, sugarcane molasses and methanol. Best results using glass columns (forced aeration) were found in the fourth day of fermentation: 278.4, 294.9 and 261.1 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. In Erlenmeyer flasks (aeration by diffusion) CA reached 410.7, 446.8 and 492.7 g CA/kg of dry CP with CCT 7716, CCT 7718 and CCT 7717, respectively. The aeration by diffusion improved CA production by the three strains. A data acquisition system specially developed for biotechnological processes analysis was used to perform the respirometric parameters measurement.


Assuntos
Aspergillus niger/genética , Aspergillus niger/metabolismo , Ácido Cítrico/metabolismo , Citrus/química , Aspergillus niger/efeitos da radiação , Biomassa , Reatores Biológicos , Biotecnologia , Cromatografia Gasosa , Ergosterol , Fermentação , Metanol/metabolismo , Melaço , Mutagênese , Raios Ultravioleta
8.
Crit Rev Biotechnol ; 32(3): 263-73, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22044348

RESUMO

The gibberellins (GAs) are an important group of hormones which exert various effects on promoter and regulator of plant growth. Gibberellic acid (GA(3)) is a natural plant hormone, with great economical and industrial importance. It affects stem elongation, germination, elimination of dormancy, flowering, sex expression, enzyme induction and leaf and fruit senescence. Despite its diverse applications, the use of GA(3) is limited due to its high production costs. The industrial process currently used for the production of GA(3) is based on submerged fermentation (SmF) techniques. As an alternative for its production, solid state fermentation (SSF) has also been investigated for its ability to increase the yields of GA(3) with the use of agro-industrial wastes as support/substrate, which contributes to the decreased production costs. This review describes GA(3)'s physical, chemical and biological properties, its production by fermentation and new advances that are being carried out with special interest on the SSF technique.


Assuntos
Reatores Biológicos , Giberelinas/biossíntese , Microbiologia Industrial/métodos , Fermentação
9.
Bioprocess Biosyst Eng ; 35(7): 1067-79, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22349925

RESUMO

Schizophyllum commune produces phytase through solid-state fermentation using different agroindustrial residues. After optimization of phytase production, a maximal level of phytase (113.7 Units/gram of dry substrate) was obtained in wheat bran based medium containing 5% sucrose, 50% humidity, 7.5% of biomass at 33 °C pH 7.0 during 72 h and a 285% improvement in enzyme titre was achieved. Analysis of fermentation parameters profile for phytase production showed the highest productivity (1.466 Units/gram of dry substrate/hour) in 66 h of fermentation. Phytase has an optimal pH of 5.0, an optimal temperature of 50 °C and K (m) and V (max) values of 0.16 mM and 1.85 µmol mL(-1) min(-1), respectively. Phytase activity was stimulated essentially in the presence of K(+), Ca(2+), Mg(2+), Mn(2+), Zn(2+), Cu(2+), Fe(2+), Fe(3+), Co(2+), Ni(2+), acetate and citrate at concentrations of 1 mM. Phytase had the best shelf life when stored at a cooling temperature, maintaining 38% of its initial activity after 112 days of storage, and still presenting enzymatic activity after 125 days of storage. Stability studies of phytase performed in aqueous enzyme extracts showed satisfactory results using polyethyleneglycol 3350, carboxymethylcellulose, methylparaben, mannitol and benzoic acid in concentrations of 0.25, 0.025, 0.025, 0.25, and 0.0025%, respectively. PEG 3350 was shown to be the best stabilizing agent, resulting in 109% of phytase activity from the initial crude extract remaining activity in after 90 days.


Assuntos
6-Fitase/biossíntese , Fermentação , Schizophyllum/enzimologia , 6-Fitase/metabolismo , Biomassa , Estabilidade Enzimática , Temperatura Alta , Concentração de Íons de Hidrogênio , Especificidade por Substrato
10.
Front Microbiol ; 13: 994524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406426

RESUMO

Cocoa beans fermentation is a spontaneous process, essential for the generation of quality starting material for fine chocolate production. The understanding of this process has been studied by the application of high-throughput sequencing technologies, which grants a better assessment of the different microbial taxa and their genes involved in this microbial succession. The present study used shotgun metagenomics to determine the enzyme-coding genes of the microbiota found in two different groups of cocoa beans varieties during the fermentation process. The statistical evaluation of the most abundant genes in each group and time studied allowed us to identify the potential metabolic pathways involved in the success of the different microorganisms. The results showed that, albeit the distinction between the initial (0 h) microbiota of each varietal group was clear, throughout fermentation (24-144 h) this difference disappeared, indicating the existence of selection pressures. Changes in the microbiota enzyme-coding genes over time pointed to the distinct ordering of fermentation at 24-48 h (T1), 72-96 h (T2), and 120-144 h (T3). At T1, the significantly more abundant enzyme-coding genes were related to threonine metabolism and those genes related to the glycolytic pathway, explained by the abundance of sugars in the medium. At T2, the genes linked to the metabolism of ceramides and hopanoids lipids were clearly dominant, which are associated with the resistance of microbial species to extreme temperatures and pH values. In T3, genes linked to trehalose metabolism, related to the response to heat stress, dominated. The results obtained in this study provided insights into the potential functionality of microbial community succession correlated to gene function, which could improve cocoa processing practices to ensure the production of more stable quality end products.

11.
Bioresour Technol ; 341: 125795, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34523570

RESUMO

The generation of agroindustrial byproducts is rising fast worldwide. The slaughter of animals, the production of bioethanol, and the processing of oil palm, cassava, and milk are industrial activities that, in 2019, generated huge amounts of wastewaters, around 2448, 1650, 256, 85, and 0.143 billion liters, respectively. Thus, it is urgent to reduce the environmental impact of these effluents through new integrated processes applying biorefinery and circular economy concepts to produce energy or new products. This review provides the characteristics of some of the most important agro-industrial wastes, including their physicochemical composition, worldwide average production, and possible environmental impacts. In addition, some alternatives for reusing these materials are addressed, focusing mainly on energy savings and the possibilities of generating value-added products. Finally, this review considers recent research and technological innovations and perspectives for the future.


Assuntos
Manihot , Águas Residuárias , Animais , Resíduos Industriais , Indústrias
12.
J Hazard Mater ; 404(Pt A): 124059, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33027733

RESUMO

The sugarcane industry is one of the largest in the world and processes huge volumes of biomass, especially for ethanol and sugar production. These processes also generate several environmentally harmful solid, liquid, and gaseous wastes. Part of these wastes is reused, but with low-added value technologies, while a large unused fraction continues to impact the environment. In this review, the classic waste reuse routes are outlined, and promising green and circular technologies that can positively impact this sector are discussed. To remain competitive and reduce its environmental impact, the sugarcane industry must embrace technologies for bagasse fractionation and pyrolysis, microalgae cultivation for both CO2 recovery and vinasse treatment, CO2 chemical fixation, energy generation through the anaerobic digestion of vinasse, and genetically improved fermentation yeast strains. Considering the technological maturity, the anaerobic digestion of vinasse emerges as an important solution in the short term. However, the greatest environmental opportunity is to use the pure CO2 from fermentation. The other opportunities still require continued research to reach technological maturity. Intensifying the processes, the exploration of driving-change technologies, and the integration of wastes through biorefinery processes can lead to a more sustainable sugarcane processing industry.


Assuntos
Microalgas , Saccharum , Biomassa , Etanol , Gases
13.
Appl Biochem Biotechnol ; 191(3): 1271-1279, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32086704

RESUMO

New studies on cellulolytic enzymes aiming to improve biofuels production lead to a concern over the assaying methods commonly applied to measure their activity. One of the most used methods is Ghose's cellulase and endoglucanase assay, developed by the International Union of Pure and Applied Chemistry in 1987. Carrying out this method demands high volumes of reagents and generation of high amounts of chemical residues. This work aimed to adapt Ghose's methodology to reduce its application cost and residue generation and validate the adjustments. To do so, International and Brazilian laws were applied to validate methodologies. Method's modifications were successfully validated according to all institutions and were considered linear, accurate, precise, and reproducible. It was possible to reduce the volume of reagents and residues in 12 times. Considering the routine work of most laboratories, it is a great reduction on material costs and residue treatment, which reflects in sustainability and environmental impacts.


Assuntos
Biocombustíveis , Biotecnologia/métodos , Celulase/química , Celulose/química , Técnicas de Química Analítica/normas , Biotecnologia/normas , Brasil , Calibragem , Técnicas de Química Analítica/métodos , Fermentação , Glucose/química , Hidrólise , Limite de Detecção , Modelos Lineares , Reprodutibilidade dos Testes , Açúcares/química
14.
Bioresour Technol ; 300: 122719, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31956056

RESUMO

Microalgae are sources of nutritional products and biofuels. However, their economical processing is challenging, because of (i) the inherently low concentration of biomass in algal cultures, below 0.5%, (ii) the high-water content in the harvested biomass, above 70%; and (iii) the variable intracellular content and composition. Cell wall structure and strength vary enormously among microalgae, from naked Dunaliella cells to robust Haematococcus cysts. High-value products justify using fast and energy-intensive processes, ranging from 0.23 kWh/kg dry biomass in high-pressure homogenization, to 6 kWh/kg dry biomass in sonication. However, in biofuels production, the energy input must be minimized, requiring slower, thermal or chemical pretreatments. Whichever the primary fraction of interest, the spent biomass can be processed into valuable by-products. This review discusses microalgal cell structure and composition, how it affects pretreatment, focusing on technologies tested for large scale or promising for industrial processes, and how these can be integrated into algal biorefineries.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Alimentos
15.
Biomed Res Int ; 2017: 5191046, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29082248

RESUMO

Gibberellic acid (GA3) is an important phytohormone, a member of gibberellins family, which acts as a promoter and regulator of plant growth. This study aimed to evaluate GA3 production by Fusarium moniliforme LPB03 and Gibberella fujikuroi LPB06 using different techniques of fermentation, solid state fermentation (SSF), submerged fermentation (SmF), and semisolid state fermentation (SSSF), and different types of bioreactors. In all techniques, citric pulp (CP), a subproduct obtained from the extraction of orange juice, was employed as the substrate/support. GA3 production by SSF reached 7.60 g kg-1 and 7.34 g kg-1 in Erlenmeyer flasks and column bioreactors, respectively. For SmF, the highest concentration of GA3 obtained was 236.00 mg L-1 in Erlenmeyer flasks, 273.00 mg L-1 in a 10 L stirred tank reactor (STR), and 203.00 mg L-1 in a 1.5 L bubble column reactor (BCR). SSSF was conducted with a CP suspension. In this case, GA3 concentration reached 331.00 mg L-1 in Erlenmeyer flasks and 208 mg L-1 in a BCR. The choice of the fermentation technique is undoubtedly linked to the characteristics and productivity of each process. The methods studied are inexpensive and were found to produce good proportions of GA3, making them suitable for several applications.


Assuntos
Ácido Cítrico/química , Fermentação , Giberelinas/biossíntese , Reguladores de Crescimento de Plantas/biossíntese , Reatores Biológicos , Fusarium/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Gibberella/química , Gibberella/genética , Gibberella/crescimento & desenvolvimento , Giberelinas/química , Giberelinas/genética , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/genética
16.
AIMS Microbiol ; 3(3): 629-648, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31294180

RESUMO

Agriculture producers, pushed by the need for high productivity, have stimulated the intensive use of pesticides and fertilizers. Unfortunately, negative effects on water, soil, and human and animal health have appeared as a consequence of this indiscriminate practice. Plant probiotic microorganisms (PPM), also known as bioprotectants, biocontrollers, biofertilizers, or biostimulants, are beneficial microorganisms that offer a promising alternative and reduce health and environmental problems. These microorganisms are involved in either a symbiotic or free-living association with plants and act in different ways, sometimes with specific functions, to achieve satisfactory plant development. This review deals with PPM presentation and their description and function in different applications. PPM includes the plant growth promoters (PGP) group, which contain bacteria and fungi that stimulate plant growth through different mechanisms. Soil microflora mediate many biogeochemical processes. The use of plant probiotics as an alternative soil fertilization source has been the focus of several studies; their use in agriculture improves nutrient supply and conserves field management and causes no adverse effects. The species related to organic matter and pollutant biodegradation in soil and abiotic stress tolerance are then presented. As an important way to understand not only the ecological role of PPM and their interaction with plants but also the biotechnological application of these cultures to crop management, two main approaches are elucidated: the culture-dependent approach where the microorganisms contained in the plant material are isolated by culturing and are identified by a combination of phenotypic and molecular methods; and the culture-independent approach where microorganisms are detected without cultivating them, based on extraction and analyses of DNA. These methods combine to give a thorough knowledge of the microbiology of the studied environment.

17.
Int J Med Mushrooms ; 18(9): 757-767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27910768

RESUMO

Ganoderma lucidum is a well-known representative of mushrooms that have been used in traditional Chinese medicine for centuries. New discoveries related to this medicinal mushroom and its biological properties are frequently reported. However, only recently have scientists started to pay special attention to G. lucidum spores. This is in part because of the recent development of methods for breaking the spore wall and extracting biocompounds from the spore. Although some research groups are working with G. lucidum spores, data in the literature are still limited, and the methods used have not been systematized. This review therefore describes the main advances in techniques for breaking the spore wall and extracting biocompounds from the spore. In addition, the major active components identified and their biological properties, such as neurological activity and antiaging and cell-protective effects, are investigated because these are of importance for potential drug development.


Assuntos
Envelhecimento/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Citoproteção/efeitos dos fármacos , Reishi/química , Esporos Fúngicos/química , Fármacos do Sistema Nervoso Central/química , Humanos
18.
Braz. arch. biol. technol ; 64(spe): e21200658, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1285569

RESUMO

Abstract Food supplements have been increasingly investigated. Probiotics have several benefits for human and animal health and selenium (Se) is widely recommended against oxidative stress. In this context, the aim of this study was to develop a low-cost bioprocess to produce a functional food product comprising both probiotic and Se accumulation. Yeast cells of Saccharomyces boulardii CCT 4308 were cultivated using sugarcane molasses as substrate. Optimization studies were performed to evaluate the best medium composition for biomass production and Se-accumulation in batch and fed-batch systems. Optimized conditions were defined with a medium composed of 150 g L-1 sugarcane molasses and 12 g L-1 yeast extract, with feeding of 100 g L-1 sugarcane molasses and 100 μg mL-1 of Se incorporation after 4 h and 10 h of fermentation, respectively, during 48 h in STR (stirred tank reactor). Best biomass production reached 14.52 g L-1 with 3.20 mg Se g-1 biomass at 12 h. Process optimization led to 4.82-fold increase in biomass production compared to initial condition. A final Se-enriched S. boulardii CCT 4308 biomass was obtained, which is comparable to commercial products. An alternative probiotic yeast biomass was efficiently produced as a new food-form of Se supplement in a sustainable process using an inexpensive agro-industrial residue.


Assuntos
Selênio , Melaço , Biomassa , Probióticos , Saccharomyces boulardii
19.
Front Microbiol ; 6: 1177, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26579086

RESUMO

In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir's exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir's microflora and the importance of kefiran as a beneficial health substance.

20.
Appl Biochem Biotechnol ; 173(7): 1652-66, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24850359

RESUMO

Of the many reported applications for xylanase, its use as a food supplement has played an important role for monogastric animals, because it can improve the utilisation of nutrients. The aim of this work was to produce xylanase by extractive fermentation in an aqueous two-phase system using Aspergillus tamarii URM 4634, increasing the scale of production in a bioreactor, partially characterising the xylanase and evaluating its influence on monogastric digestion in vitro. Through extractive fermentation in a bioreactor, xylanase was obtained with an activity of 331.4 U mL(-1) and 72% yield. The xylanase was stable under variable pH and temperature conditions, and it was optimally active at pH 3.6 and 90 °C. Xylanase activity potentiated the simulation of complete monogastric digestion by 6%, and only Mg2+ inhibited its activity. This process provides a system for efficient xylanase production by A. tamarii URM 4634 that has great potential for industrial use.


Assuntos
Aspergillus/metabolismo , Reatores Biológicos/microbiologia , Endo-1,4-beta-Xilanases/biossíntese , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA